
Subject Name: Object Oriented Programming Using C++

Subject Code: BCA-301 N

Subject Topic: Static and Dynamic Memory Allocation

Abhishek Dwivedi
Assistant Professor

Department of Computer Application

UIET, CSJM University, Kanpur

Memory Allocation

• Memory Allocation: Memory allocation is a
process by which computer programs and
services are assigned with physical or virtual
memory space. The memory allocation is done
either before or at the time of program
execution. There are two types of memory
allocations:

• Compile-time or Static Memory Allocation

• Run-time or Dynamic Memory Allocation

Static Memory Allocation / Dynamic Memory Allocation

• Static Memory Allocation: Static Memory is
allocated for declared variables by the compiler. The
address can be found using the addressof operator
and can be assigned to a pointer. The memory is
allocated during compile time.

• Dynamic Memory Allocation: Memory allocation
done at the time of execution(run time) is known
as dynamic memory allocation. Functions calloc()
and malloc() support allocating dynamic memory. In
the Dynamic allocation of memory space is allocated
by using these functions when the value is returned
by functions and assigned to pointer variables.

Differences between Static Memory Allocation and Dynamic

Memory Allocation

Static Memory Allocation Dynamic Memory Allocation

In static memory allocation, memory is

allocated before the execution of the

program begins.

In Dynamic memory allocation, memory is

allocated during the execution of the

program.

Memory allocation and deallocation

actions are not performed during the

execution.

Memory allocation and deallocation actions

are performed during the execution.

It uses stack for managing the static

allocation of memory

It uses heap for managing the dynamic

allocation of memory

The data in static memory is allocated

permanently.

The data in dynamic memory is allocated

only when program unit is active.

It is less efficient It is more efficient

Dynamic Memory Allocation in C++

A basic memory architecture used by any C++ program:

• Code Segment: Compiled program with executive instructions

are kept in code segment. It is read only. In order to avoid over

writing of stack and heap, code segment is kept below stack and

heap.

• Data Segment: Global variables and static variables are kept in

data segment. It is not read only.

• Stack: A stack is usually pre-allocated memory. The

stack is a LIFO data structure. Each new variable is

pushed onto the stack. Once variable goes out of scope,

memory is freed. Once a stack variable is freed, that

region of memory becomes available for other variables.

The stack grows and shrinks as functions push and pop

local variables. It stores local data, return addresses,

arguments passed to functions and current status of

memory.

• Heap: Memory is allocated during program execution.

Memory is allocated using new operator and deallocating

memory using delete operator.

Allocation of Heap Memory using new Keyword

• How to allocate heap memory to a variable or class object using
the new keyword.

• Syntax:

pointervariable = new datatype

Example:

int *pv;

pv = new int;

Or combine both statements

int *pv = new int;

int *pv = new int[10]; // allocating block of memory

• If enough memory is not available in the heap it is indicated by
throwing an exception of type std::bad_alloc and a pointer is
returned.

Deallocation of memory using delete Keyword

• Once heap memory is allocated to a variable or class

object using the new keyword, we can deallocate that

memory space using the delete keyword.

• Syntax:

delete pointervariable;

• Example:

delete pv; //deallocate memory for one element

delete[] pv; //deallocate memory for array

Example
#include<iostream.h>

#include<conio.h>

void main()

{

int size,i;

int *ptr;

cout<<"\n\tEnter size of Array : ";

cin>>size;

ptr = new int[size]; //Creating memory at run-time

for(i=0;i<size;i++) //Input array from user.

{

cout<<"\nEnter any number : ";

cin>>ptr[i];

}

for(i=0;i<size;i++) //Output array to console.

{cout<<ptr[i]<<endl;}

delete[] ptr; //deallocating all the memory

getch();

}

Dynamic Memory Allocation for Objects
class A

{

public:

A()

{

cout << "Constructor" << endl;

}

~A()

{

cout << "Destructor" << endl;

}

};

void main()

{

A *a = new A[4];

delete [] a; // Delete array

getch();

}

References:

• www.studytonight.com

• www.tutorialpoint.com

• www.geeksforgeeks.org

• “Object oriented programming in C++”, Robert Lafore

• “Object oriented programming with C++”, E.Balagurusamy

