
Subject Name: Object Oriented Programming Using C++

Subject Code: BCA-301 N

Subject Topic: Types of Inheritance and Members access specifiers 

Abhishek Dwivedi
Assistant Professor

Department of Computer Application

UIET, CSJM University, Kanpur



Modes of Inheritance
• Public mode: If we derive a sub class from a public

base class. Then the public member of the base class
will become public in the derived class and protected
members of the base class will become protected in
derived class.

• Protected mode: If we derive a sub class from a
Protected base class. Then both public member and
protected members of the base class will become
protected in derived class.

• Private mode: If we derive a sub class from a Private
base class. Then both public member and protected
members of the base class will become Private in
derived class.



• The below table summarizes the above three modes and shows

the access specifiers of the members of base class in the sub

class when derived in public, protected and private modes:



class A

{ 

public: 

int x; 

protected: 

int y; 

private: 

int z; 

}; 

class B : public A 

{ 

// x is public 

// y is protected 

// z is not accessible from B 

}; 

class C : protected A 

{ 

// x is protected 

// y is protected 

// z is not accessible from C 

}; 

class D : private A // 'private' is default for classes 

{ 

// x is private 

// y is private 

// z is not accessible from D 

}; 



Types of Inheritance in C++

We have 5 different types of Inheritance. Namely,

• Single Inheritance

• Multiple Inheritance

• Hierarchical Inheritance

• Multilevel Inheritance

• Hybrid Inheritance (also known as Virtual Inheritance)



Single Inheritance in C++

• In this type of inheritance one derived class inherits from only

one base class. It is the most simplest form of Inheritance.



Example

class Vehicle 

{ 

public: 

Vehicle() 

{ 

cout << "This is a Vehicle" << endl; 

} 

}; 

class Car: public Vehicle // sub class derived from one base class 

{ 

}; 

void main() 

{

// creating object of sub class will invoke the constructor of base classes 

Car obj; 

getch(); 

} 



Another Example

class base //single base class 

{

public: 

int x; 

void getdata() 

{ 

cout << "Enter the value of x = "; 

cin >> x;

}

}; 



class derive : public base //single derived class 

{

private: 

int y; 

public: 

void readdata()

{ 

cout << "Enter the value of y = "; 

cin >> y; 

} 

void product() 

{ 

cout << "Product = " << x * y;

} 

}; 



void main() 

{ 

derive a; //object of derived class 

a.getdata(); 

a.readdata();

a.product(); 

getch(); 

}



References:

• www.studytonight.com

• www.tutorialpoint.com

• www.geeksforgeeks.org

• “Object oriented programming in C++” Robert Lafore 

• “Object oriented programming with C++”, E.Balagurusamy


