POLYMERASE CHAIN REACTION

PCR: FIRST DESCRIBED IN MID 1980'S, KARY MULLIS, NOBEL PRIZE IN 1993.

AN INVITRO METHOD FOR THE ENZYMATIC SYNTHESIS OF SPECIFIC DNA SEQUENCING.

REQUIRES:

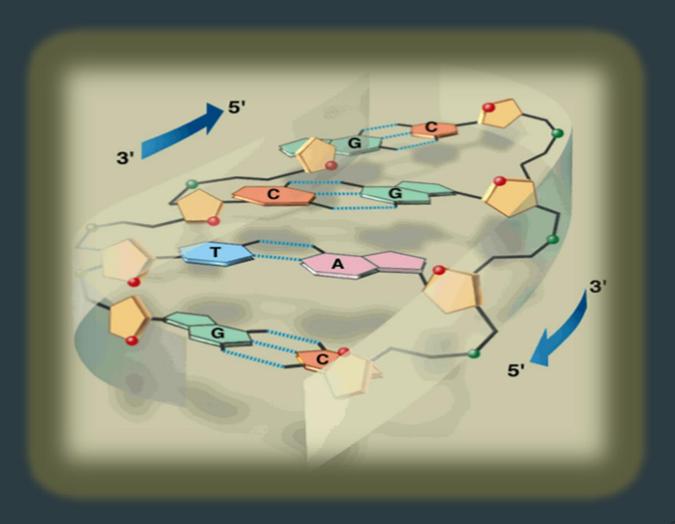
□ TWO SPECIFIC OLIGONUCLEOTIDES PRIMERS

□ THERMOSTABLE DNA POLYMERASE

□ d NTPs

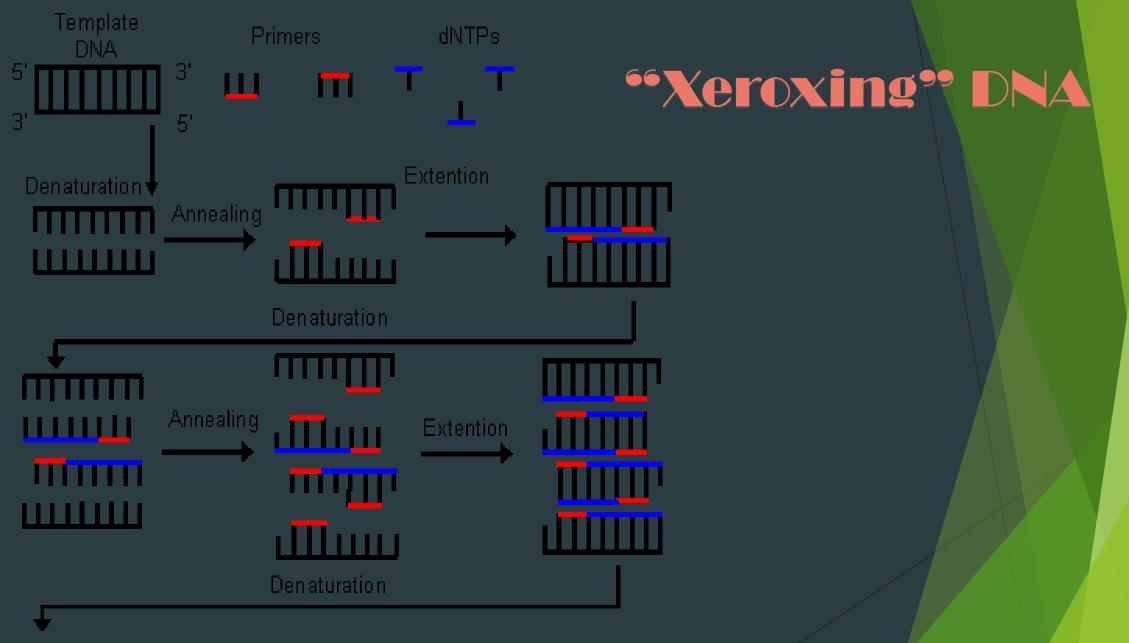
TEMPLATE DNA

□ MgCl2- act as cofactor for taq polymerase.


BUFFER

INITIALLY PCR USED THE KLENOW FRAGMENTS OF E.COLI DNA POLYMERASE- INACTIVATED BY HIGH TEMPERATURE.

REQUIRED A THERMOSTABLE DNA POLYMERASE – TAQ POLYMERASE FROM "THERMUS AQUATICUS", A THERMOPHILIC EUBACTERIAL MICROORGANISM.

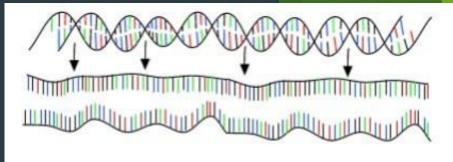

DIRECTIONAL BIOSYNTHESIS

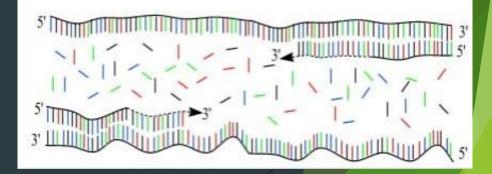
CAN BE PERFORMED BY HAND OR IN A MACHINE CALLED THERMAL CYCLER

Steps repeated several times

STEPS : Step-1

denaturation


ds DNA to ss DNA **STEP-2**


<u>annealing</u>

primers onto template **STEP-3**

<u>extension</u>

d NTPs extend 2nd strand

-Extension product in one cycle serve as template in the next.

HOW PCR WORKS ?

- BEGINS WITH DNA CONTAINING A SEQUENCE TO BE AMPLIFIED AND A PAIR OF SYNTHETIC OLIGONUCLEOTIDE PRIMERS THAT FLANK THE SEQUENCE. NEXT, DENATURE THE DNA TO SINGLE STRAND AT 94°C.
- RAPIDLY COOL THE DNA (37°C-65°)AND ANNEAL PRIMERS TO COMPLEMENTARY SINGLE STRAND SEQUENCES FLANKING THE TARGET DNA.
- EXTEND PRIMERS AT 70°C-75°C USING A HEAT RESISTANT DNA POLYMERASE SUCH AS TAG POLYMERASE DERIVED FROM THERMUS AQUATICUS.
- REPEAT THE CYCLE OF DENATURATION, ANNEALING AND EXTENSION 20-45 TIMES TO PRODUCE 1 MILLION TO 35 TRILLION COPIES OF THE TARGET DNA.
- EXTEND THE PRIMERS AT 70-75°C ONCE MORE TO ALLOW INCOMPLETE EXTENSION PRODUCTS IN THE REACTION MIXTURE TO EXTEND COMPLETELY.
- COOL TO 4°C AND STORE OR USE AMPLIFIED PCR PRODUCT FOR ANALYSIS.

Polymerase chain reaction (PCR)

Typical PCR Temps/Times

Initial denaturation	90° – 95° C	1 – 3 mi	
Denature	90° – 95° C	0.5 – 1 min	
Primer annealing	45° – 65° C	0.5 – 1 min	
Primer extension	70° – 75° C	0.5 – 2 min	
Final extension	70° – 75° C	5 – 10 min	
Stop reaction	4º C or 10 mM EDTA	hold	

REAL – TIME QUANTITATIVE PCR

SAME AS PCR, BUT MEASURES THE ABUNDANCE OF DNA AS IT IS AMPLIFIED.

USEFUL FOR QUANTITATIVELY MEASURING THE LEVELS OF MRNA IN A SAMPLE.

USES REVERSE TRANSCRIPTASE TO GENERATE c DNA FOR THE TEMPLATE.

CAN ALSO BE USED TO QUANTITATIVELY ESTIMATE FRACTION OF DNA FROM VARIOUS ORGANISMS IN A HETEROGENEOUS SAMPLE. (e.g: can be used tomeasure abundance of different microbes in soil samples).

SUMMARY AND APPLICATIONS OF PCR

- **AMPLYFY DNA FOR CLONING.**
- ♦ AMPLIFY DNA FOR SEQUENCING WITHOUT CLONING (PCR).
- ✤ DNA SEQUENCING REACTION.
- MAPPING GENES AND REGULATORY SEQUENCES.
- ✤ SEX DETERMINATION.
- DIAGNOSE DISEASE.
- ✤ FORENSIC ANALYSIS.
- ✤ DETECTION OF GENETICALLY MODIFIED FOOD (GMO's).