PORTFOLIO THEORY

The Benefits of Diversification

PORTFOLIO EXPECTED RETURN

$$
E\left(R_{P}\right)=\sum_{i=1}^{n} w_{i} E\left(R_{i}\right)
$$

where $E\left(R_{P}\right)=$ expected portfolio return $w_{i}=$ weight assigned to security i $E\left(R_{i}\right)=$ expected return on security i $n=$ number of securities in the portfolio

Example A portfolio consists of four securities with expected returns of $12 \%, 15 \%, 18 \%$, and 20% respectively. The proportions of portfolio value invested in these securities are $0.2,0.3,0.3$, and 0.20 respectively.

The expected return on the portfolio is:

$$
\begin{aligned}
E\left(R_{P}\right)= & 0.2(12 \%)+0.3(15 \%)+0.3(18 \%)+0.2(20 \%) \\
& =16.3 \%
\end{aligned}
$$

PORTFOLIO RISK

The risk of a portfolio is measured by the variance (or standard deviation) of its return. Although the expected return on a portfolio is the weighted average of the expected returns on the individual securities in the portfolio, portfolio risk is not the weighted average of the risks of the individual securities in the portfolio (except when the returns from the securities are uncorrelated).

MEASUREMENT OF COMOVEMENTS IN SECURITY RETURNS

- To develop the equation for calculating portfolio risk we need information on weighted individual security risks and weighted comovements between the returns of securities included in the portfolio.
- Comovements between the returns of securities are measured by covariance (an absolute measure) and coefficient of correlation (a relative measure).

COVARIANCE

$\operatorname{Cov}\left(R_{i}, R_{j}\right)=p_{1}\left[R_{i 1}-E\left(R_{i}\right)\right]\left[R_{j 1}-E\left(R_{j}\right)\right]$

$$
+p_{2}\left[R_{i 2}-E\left(R_{j}\right)\right]\left[R_{j 2}-E\left(R_{j}\right)\right]
$$

$$
\begin{aligned}
& + \\
& \vdots
\end{aligned}
$$

$$
+p_{n}\left[R_{i n}-E\left(R_{i}\right)\right]\left[R_{j n}-E\left(R_{j}\right)\right]
$$

ILLUSTRATION

The returns on assets 1 and 2 under five possible states of nature are given below
State of nature Probability Return on asset 1 Return on asset 2

1	0.10	-10%	5%
2	0.30	15	12
3	0.30	18	19
4	0.20	22	15
5	0.10	27	12

The expected return on asset 1 is :

$$
E\left(R_{1}\right)=0.10(-10 \%)+0.30(15 \%)+0.30(18 \%)+0.20(22 \%)+0.10(27 \%)=16 \%
$$

The expected return on asset 2 is :
$E\left(R_{2}\right)=0.10(5 \%)+0.30(12 \%)+0.30(19 \%)+0.20(15 \%)+0.10(12 \%)=14 \%$
The covariance between the returns on assets 1 and 2 is calculated below :

State of nature	Probability	Return on asset 1	Deviation of the return on asset 1 from its mean	Return on asset 2	Deviation of the return on asset 2 from its mean	Product of the deviations times probability
(1)	(2)	(3)	(4)	(5)	(6)	(2) x (4) \times (6)

Thus the covariance between the returns on the two assets is 26.0 .

CO EFFILENT OF CORRELATION

$$
\operatorname{Cov}\left(R_{i}, R_{j}\right)
$$

$\operatorname{Cor}\left(\boldsymbol{R}_{i}, \boldsymbol{R}_{j}\right)$ or $\rho_{i j}=$

$$
\sigma\left(\boldsymbol{R}_{i}, \boldsymbol{R}_{j}\right)
$$

$$
=\frac{\sigma_{i j}}{\sigma_{i} \sigma_{j}}
$$

$$
\sigma_{i j}=\rho_{i j} \cdot \sigma_{i} \cdot \sigma_{j}
$$

where $\rho_{i j}=$ correlation coefficient between the returns on securities i and j
$\sigma_{i j}=$ covariance between the returns on securities i and j
$\sigma_{i}, \sigma_{j}=$ standard deviation of the returns on securities i and j

PORTFOLIO RISK : 2 - SECURITY CASE

$$
\sigma_{p}=\left[w_{1}^{2} \sigma_{1}^{2}+w_{2}^{2} \sigma_{2}^{2}+2 w_{1} w_{2} \rho_{12} \sigma_{1} \sigma_{2}\right]^{1 / 2}
$$

Example : $w_{1}=0.6, w_{2}=0.4$,

$$
\begin{aligned}
\sigma_{1} & =10 \%, \sigma_{2}=16 \% \\
\rho_{12} & =0.5
\end{aligned}
$$

$$
\begin{aligned}
\sigma_{p} & =\left[0.6^{2} \times 10^{2}+0.4^{2} \times 16^{2}+2 \times 0.6 \times 0.4 \times 0.5 \times 10 \times 16\right]^{1 / 2} \\
& =10.7 \%
\end{aligned}
$$

PORTFOLIO RISK : n - SECURITY CASE

$$
\sigma_{p}=\left[\Sigma \Sigma w_{i} w_{j} \rho_{i j} \sigma_{i} \sigma_{j}\right]^{1 / 2}
$$

Example : $w_{1}=0.5, w_{2}=0.3$, and $w_{3}=0.2$

$$
\begin{aligned}
& \sigma_{1}=10 \%, \sigma_{2}=15 \%, \sigma_{3}=20 \% \\
& \rho_{12}=0.3, \rho_{13}=0.5, \rho_{23}=0.6
\end{aligned}
$$

$$
\begin{aligned}
\sigma_{p}= & {\left[\boldsymbol{w}_{1}^{2} \sigma_{1}{ }^{2}+w_{2}{ }^{2} \sigma_{2}{ }^{2}+w_{3}{ }^{2} \sigma_{3}^{2}+2 w_{1} w_{2} \rho_{12} \sigma_{1} \sigma_{2}\right.} \\
& \left.+2 w_{2} w_{3} \rho_{13} \sigma_{1} \sigma_{3}+2 w_{2} w_{3} \rho_{23} \sigma_{2} \sigma_{3}\right]^{1 / 2} \\
= & {\left[0.5^{2} \times 10^{2}+0.3^{2} \times 15^{2}+0.2^{2} \times 20^{2}\right.} \\
& +2 \times 0.5 \times 0.3 \times 0.3 \times 10 \times 15 \\
& +2 \times 0.5 \times 0.2 \times 05 \times 10 \times 20 \\
& +2 \times 0.3 \times 0.2 \times 0.6 \times 15 \times 20]^{1 / 2} \\
& =10.79 \%
\end{aligned}
$$

RISK OF AN N - ASSET PORTFOLIO

$$
\sigma_{p}^{2}=\Sigma \Sigma w_{i} w_{j} \rho_{i j} \sigma_{i} \sigma_{j}
$$

$\boldsymbol{n} \times \boldsymbol{n}$ MATRIX

DOMINANCE OF COVARIANCE

As the number of securities included in a portfolio increases, the importance of the risk of each individual security decreases whereas the significance of the covariance relationship increases

EFFICICNT FRONTIER FOR A TWO-SECURITY CASE

Security A

12\%
20\%

Security B
20\% 40\%

Coefficient of correlation

Portfolio	Proportion of A w_{A}	Proportion of B w_{B}	Expected return $E\left(R_{p}\right)$	Standard deviation σ_{p}
1 (A)	1.00	0.00	12.00%	20.00%
2	0.90	0.10	12.80%	17.64%
3	0.759	0.241	13.93%	16.27%
4	0.50	0.50	16.00%	20.49%
5	0.25	0.75	18.00%	29.41%
$6(B)$	0.00	1.00	20.00%	40.00%

PORTHOLIO OPTIONS AND THE EFFICIENT FRONTIER

FEASIBLE FRONTIER UNDER VARIOUS DEGREES OF COEFFICIENT OF CORRELATION

EFFICIDNT FRONTIER FOR THE n-SECURITY CASE

OPTIMAL PORTFOLIO

RISKLESS LIENDING AND BORROWING OPPORTUNITY

Expected
return,$E\left(R_{p}\right)$$\uparrow$

Thus, with the opportunity of lending and borrowing, the efficient frontier changes. It is no longer AFX. Rather, it becomes R_{f} SG as it domniates AFX.

SEPARATION THIEOREM

- Since \boldsymbol{R}_{f} SG dominates AFX, every investor would do well to choose some combination of R_{f} and S . A conservative investor may choose a point like U , whereas an aggressive investor may choose a point like V.
- Thus, the task of portfolio selection can be separated into two steps:

1. Identification of S , the optimal portfolio of risky securities.
2. Choice of a combination of R_{f} and S , depending on one's risk attitude.

This is the import of the celebrated separation theorem

SINGLE INDEX MODEL

INFORMATION - INTENSITY OF THE MARKOWITZ MODEL n SECURITIES
n VARIANCE TERMS \& $n(n-1) / 2$ COVARIANCE TERMS

SHARPE'S MODEL

$$
\begin{aligned}
& R_{i t}=a_{i}+b_{i} R_{M t}+e_{i t} \\
& E\left(R_{i}\right)=a_{i}+b_{i} E\left(R_{M}\right) \\
& \operatorname{VAR}\left(R_{i}\right)=b_{i}^{2}\left[\operatorname{VAR}\left(R_{M}\right)\right]+\operatorname{VAR}\left(e_{i}\right) \\
& \operatorname{COV}\left(R_{i}, R_{j}\right)=b_{i} b_{j} \operatorname{VAR}\left(R_{M}\right)
\end{aligned}
$$

MARKOWITZ MODEL

$$
n(n+3) / 2
$$

$E\left(\boldsymbol{R}_{i}\right) \& \operatorname{VAR}\left(\boldsymbol{R}_{i}\right)$ FOR EACH SECURITY $n(n-1) / 2$
COVARIANCE TERMS

SINGLE INDEX MODEL

$$
3 n+2
$$

$b_{i}, b_{j} \operatorname{VAR}\left(e_{i}\right)$ FOR
EACH SECURITY \&
$E\left(R_{M}\right) \& \operatorname{VAR}\left(R_{M}\right)$

