Section 4.1 « Delimtions 127

4.1 DEﬁnitionS I B B T R P R S SO s L8 L (s 5 e o A e S e S BT

applications

front and rear

a};l{"’,!'_ff.l,'{_iﬂb

In ordinary English, a queue is defined as a waiting line, like a line of people
waiting to purchase tickets, where the first person in line is the first person served.
For computer applications, we similarly define a queue to be a list in which all
additions to the list are made at one end, and all deletions from the list are made

at the other end. Queues are also called first-in, first-out lists, or FIFO for short.
See Figure 4.1.

N . 2 e . -] ¥ .
e A i i - = r " ’ [1 K i |--—-‘_ -]‘. e L - .._: y
i g R if o ¥ e R b T e i R = S e N
o S R T e e BT rﬁjf:'r-r.:‘#r"' ' it

(B

Figure 4.1. A queue

Applications of queues are, if anything, even more common than are applica-
tions of stacks, since in performing tasks by computer, as in all parts of life, it is
so often necessary to wait one’s turn before having access to something. Within a
computer system there may be queues of tasks waiting for the printer,. fo_r access to
disk storage, or even, in a time-sharing system, for use of the CPU. Within a single
program, there may be multiple requests to be kept in a queue, or one task may
create other tasks, which must be done in turn by keeping them in a queue.

The entry in a queue ready to be served, that is, the first entry that will be
removed from the queue, we call the front of the queue (or, sometimes, the head
of the queue). Similarly, the last entry in the queue, that is, the one most recently
added we call the rear (or the tail) of the queue.

To complete the definition of a queue, we must specify all the OPferations that
it permits. We shall do so by listing the function name for'each o[f)e_rah‘on, together
with the preconditions and postconditions that complete its specifications. As you

Chapter 4 Queues and Linked Lists

read these specifications,
operations for a stack.

void CreateQueue(Queue *Qq);

precondition: None. &
postcondition: The queue g has been initialized to be empty. F

.....

Next come the operations for checking the status of a queue.

Boolean QueueEmpty(Queue *q);
precondition: The queue q has been created.

postcondition: The function returns true or false according as queue q _
or not. T

Boolean QueueFull(Queue *q);
precondition: The queue q has been created.

postcondition: The function returns true or false according as queue qis full

'H*p.d‘..* .?.'- .
r"l{h_;.g-: ":'r-
4]
-

S .
C e

e
J - ¢ -
b i e e L

e AT i 13 'r.._ v
. L g S S
. b . T s
¥ £ oy g B .
] o By | Wl
Y i R e
’ = il B)

The declarations for the fundamental operations on a queue come next.

void Append(QueueEntry x, Queue %q);
precondition: The queue q has been created and is not full.

P e

void Serve(QueueEntry *x, Queue *q);
precondition:

The queue q has been created and is not empty.

postcondition: The first entry in the queue has been
the value of x.

removed and returned as

'tal Operations on a queue to
oid confusion with the terms

Section 4.1 # Definitions 129

we shall use for other data types. Other names, however, are very frequently used

for these operations, terms such as Insert and Delete or the coined words Engueue
and Dequeue.

Note from the preconditions that it is an error to attempt to append an entry
onto A full queue or to serve an entry from an empty queue. If we write the
functions Append and Serve carefully, then they should return error messages when

they are used incorrectly. The declarations, however, do not guarantee that the

functions will catch the errors, and, if they do not, then they may produce spurious

and unpredictable results. Hence the careful programmer should always make

sure, whenever invoking a subprogram, that its preconditions are guaranteed to
be satisfied.

There remain four more queue operations that are sometimes useful.

entries in the queue q.

void ClearQueue(Queue *q);
precondition: The queueq has previously been created.
postcondition: All entries have been removed from q and it is now empty.

void QueueFront(QueueEntry #x, Queue «q);
precondition: The queue q has been created and is not empty.

postcondition: The variable xis a copy of the firstentry inq; the queue q remains
unchanged.

The final operation is not part of the strict definition of a queue, butit remains quite
useful for debugging and demonstration.

void TraverseQueue(Queue *q, void (*Visit)(QueueEntry x));
precondition: The queue g has been created.

postcondition: The function Visit(QueueEntry x) has been performed for each
entry in the queue, beginnng with the entry at the front and
proceeding toward the rear of q.

Section 4.2 « Implementations of Queues 131

4.2 lmplementations of Queues e T Pt

-,'iff?;;ﬂi fﬂg{}

Now that we have considered how queues are defined and the operations they ad-

mit, let us change our point of view and consider how queues can be implemented
with computer storage and C functions.

1. The Physical Model

As we did for stacks, we can create a queue in computer storage easily by setting up
an ordinary array to hold the entries. Now, however, we must keep track of both
the front and the rear of the queue. One method would be to keep the front of the
queue always in the first location of the array. Then an entry could be appended
to the queue simply by increasing the counter showing the rear, in exactly the
same way as we added an entry to a stack. To delete an entry from the queue,
however, would be very expensive indeed, since after the first entry was served,
all the remaining entries would need to be moved one position up the queue to
fill in the vacancy. With a long queue, this process would be prohibitively slow.
Although this method of storage closely models a queue of people waiting to be
served, it is a poor choice for use in computers.

2. Linear Implementation

For efficient processing of queues, we shall therefore need two indices so that we
can keep track of both the front and the rear of the queue without moving any
entries. To append an entry to the queue, we simply increase the rear by one and
put the entry in that position. To serve an entry, we take it from the position at the
front and then increase the front by one. This method, however, still has a major
defect. Both the front and rear indices are increased but never decreased. Even
if there are never more than two entries in the queue, an unbounded amount of
storage will be needed for the queue if the sequence of operations is

Append, Append, Serve, Append, Serve, Append,

The problem, of course, is that, as the queue moves down the array, the storage
space at the beginning of the array is discarded and never used again. Perhaps the
queue can be likened to a snake crawling through storage. Sometimes the snake is
longer, sometimes shorter, but if it always keeps crawling in a straight line, then it
will soon reach the end of the storage space.

Note, however, that for applications where the queue is regularly emptied
(such as when a series of requests is allowed to build up to a certain point, and then
a task is initiated that clears all the requests before returning), at a time when the
queue is empty, the front and rear can both be reset to the beginning of the array,
and the simple scheme of using two indices and straight-line storage becomes a
very efficient implementation.

