modular arithmetic

e N e
_, fi"'nf;.'. -l
i - Erppm e b i 5""
S (R v 08 B a '_l"J""

e T o L g i
A" :'SI_:E J : .Zr‘
s
i N

b
o=
b B e L
el o2

F oL, ¥ # L Al
24 LA i
e T L n

A i 6 !
ok iy g 3 s i N
% 4 =] Y .!"’._Ell-"‘t-__ .1'11 .‘ﬁ_'},ﬂ,‘j |:H_I ik ;" . 1% iy
4 -JI i _._il-_l" _-.__1- __._11 " ﬁ_'l‘ ol = 2 e 3 L . o g
B = RS ey F e e XR TV

empty or full?

Section 4.2 » Implementations of Queues 133

do not move until the priest comes by and serves them. When the priest reaches
the end of the row, he returns to the beginning and starts again, since by this time
a new row of people have come forward.

5. Circular Arrays in C
In C, we can increase an index iby 1in a circular array by writing

if (i >= MAX—-1)
| =0;

else
I+ +;

or even more easily (but perhaps less efficiently at run time since it uses division)
by using the % operator:

1= (i + 1) % MAX;

6. Boundary Conditions

Before writing formal algorithms to add to and delete from a queue, let us consider
the boundary conditions, that is, the indicators that a queue is empty or full, If
there is exactly one entry in the queue, then the front index will equal the rear
index. When this one entry is removed, then the front will be increased by 1, so
that an empty queue is indicated when the rear is one position before the front.
Now suppose that the queue is nearly full. Then the rear will have moved well
away from the front, all the way around the circle, and when the array is full the
rear will be exactly one position before the front. Thus we have another difficulty:
The front and rear indices are in exactly the same relative positions for an empty
queue and for a full queue! There is no way, by looking at the indices alone, to tell
a full queue from an empty one. This situation is illustrated in Figure 4.3.

Queue . . o i P e gy
e LA ALEE EArPEEEEEEES
one item
rear front
l Remove the item.
Empty
queue
rear front
Queue e T S MR D 1t
wnh ﬁne e ; L 5 1 1 P w2 l_-,?r"- - - : 7 -"-." s .':"] ’ F F il "-_:I-.'-:E'_‘l'. £ e :','l-_i.._‘-. =0 hd) : " _ r':
empty
position
Full
queue

rear ™ front

Figure 4.3. Empty and full queues

sl -.'l' .'51'2: hab * ;H'_'._-?..*,_".-E_I-:;‘ *:;;1“ . .' ; S gl R .- Rylecy o b, i ;. 'Ir_: -. . : :
I“i. e A ¥ iBRe T ':a'.-T g _fJ. Ly 1 . ,'-_i b ¥ , Yy v :- s :__"':-'_'r:::'l-'-'_'_} __;;{._"-A [T .
: __II"' :-'-:'I-:':' “IIJ-";.E‘F .I-‘E.'.-I :.-Ih' & ; an i i- . !. :_.il:-jr - 7 :
e # "
enlrie: ﬂ'le queﬁe The third met)¢
lue B) that would otherwise 1 neve‘f‘ c
E j,,, L Sk ::-

(o1 ,{ “ _a. If, for example, the array entr s gt
ﬂ’ u@ cauld be indicated bY B,_,_f_ '

.....
e f L

- B =

i 1
#

.....

) ywhonaver the front is deleted This is genefaﬂ

wiﬂuhe front always in the first p051 twn n i

1

X o i e
g Bt -r-..

i'-.\,.h

L IO Inqices _ﬂ_ﬁ;_;ays increasing. This is a good method’
N ont and rear indices and one pesition left va cant.

la = iﬂf':ﬁ‘if)lﬁht and l‘ﬂﬂ!‘ indices and a Boolean variable to mdlcafé -

[} o A " .] L
1 k] el .|.l_,‘
E r o,
':" “"Ild"-.' -'.-'.I:F'q*

1,.,,_-_-.._ s

I_.'lg. ey
.11 1

S

.-,' ﬂ'

S a Wﬂy lO lmplement ueues :b | ;
e 'l' imp Orlant' thin& lo remember fmmqtlus llsl G};

ia
lng b . tllzll:-; ;:‘: ;gplemleiltatmn we should
: ures like queues se

parate

ng their impleme
Nlation; and, i
ane of thege e legories of Clucstm;hpmgmmmmg we Sh‘-"“ld

eues will be used in o
ur ; ‘ali
ploying queues, we will lm:l?')h re

mentation Of 1. nio e tEt ST Ee Tt SR s
queues suited (o oy application. lp us choose

al wayﬁ kﬁ@p qu&allﬁnﬁ mncem
rom questions concerni
~ always conalder only
considered how qu
the functions em
the best imple

| Imrm DU O SR o R
J{Pﬂmh lhe :J[I{JH: n!mn rJf f;n:fw? Hmmm ,“dmg ket e ERE L
| o ‘tures from thezr] "’Plfm f-'ﬂ fﬂtzon -

Section 4.3 o Circular Queues in C 135

1.3 Circular Queues IN € m———————————————————————

type queue

Next let us write C functions for implementation of a queue. It is clear from the

last section that a great many implementations are possible, some of which are but
slight variations on others. Let us therefore concentrate on only one implementa-
tion, leaving the others as exercises. The implementation in a circular array which
uses a counter to keep track of the number of entries in the queue both illustrates
techniques for handling circular arrays and simplifies the programming of some
of the operations. Let us therefore work only with this implementation.

We shall take the queue as stored in an array indexed with the range

0 to MAXQUEUE -1

and containing entries of a type QueueEntry. The variables front and rear will point
to appropriate positions in the array. The variable count is used to keep track of the

number of entries in the queue. The file queue.h contains the structure declaration
for a queue and the prototypes associated with queues:

typedef struct queue {
int count;

int front;

int rear;

QueueEntry entry [MAXQUEUE];
} Queue;
void Append(QueueEntry, Queue *);
void CreateQueue(Queue *);
void Serve(QueueEntry #, Queue *);
int QueueSize(Queue *);
Boolean QueueEmpty(Queue *);
Boolean QueueFull(Queue =);

The definitions for MAXQUEUE and QueueEntry are application-program dependent.
For example, for our test case they are

#define MAXQUEUE 3/+ small value for testing */
typedef char QueuekEntry;

The first function we need will initialize the queue to be empty.

/= CreateQueue: create the queue.

Pre: None.
Post: The queue q has been initialized to be empty. */

void CreateQueue(Queue *q)

{
g->count = 0;
q->front = 0;
g->rear = —1;

J

