;
AT o ...‘ O] =% . k 3)

I+ Append append an entry 10 Ihe queus.

Pre: The queue q has been created and is not fill - o
Past: The entry x has been stored in the queus as its last sntry

Uses: QueueFull, Error. #/ . .
void Append(QueueEntry x, Queue *q)

{
if (QueueFull(q))
Error(” Cannot append an entry 1o a full queue “);

q->count - -

“X = q->entry [q->front] ;
q->front = (g->front + 1) % MAXQUEUE:

e sy, 1 concerning '
implementation. the size of the queue are all easy to write in thi

/I* QueueSize: return the number of entries in the
:re: Trhhe queue q has been createc queue
ost: The function returns the numpe

int QueueSize(Queus »q) umber of entries i) the Queue ¢ ~/f &
| .

return g->count:
!

137

Section 4.3 « Q¢ ular Queues in L

on-zero if the queue is emply.

heen created
gro if the queue

f« QueueEmpty: returns i
Pre: The queueq has
post: The function relurns non-z

Boolaan QueueEmpty(Queue «Qq)
{

}

«l

q is emply, Zeio otherwise.

return gq->count <= 0;

= QueueFull: returns non-zero if the queue is full.

Pre: The queue q has heen crealed.
post: The function returns non-zero if the queue is full, zero otherwise. *]

Boolean QueueFull(Queue *q)

{
return q->count >= MAXQUEUE;
}

Nmthatthequeueiupecibdnapointa

itisnotmodiﬁedbymyofm.'l'hbisa
timemquhedtomnkeamwmﬂlwpyoi

functions is evaluated.
The functions ClearQueue, QueuefFront, and TraverseQueue will be left as exer-

C1S€eS.

6 Linked Quenes i

In contiguous storage, queues were significantly harder to manipulate than were
stacks, and even somewhat harder than simple lists, because it was necessary to
treat straight-line storage as though it were arranged in a circle, and the extreme
cases of full queues and empty queues caused difficulties. It is for queues that
linked storage really comes into its own. Linked queues are just as easy to handle
as are linked stacks. We need only keep two pointers, front and rear, that will point,
respectively, to the beginning and the end of the queue. The operations of insertion
and deletion are both illustrated in Figure 4.9.

Added to
rear of
queue

Figure 4.9. Operations on a linked queue

TN :
SREN S A
Ly sl

..m...,.u_.:.....-u_....-.-”r__... -...—.... Jn-uu..r...-_r.

5

. to add a node p to the

simplicity

implementations

Section 4.6 « Linked Queues 163

Note that this function includes error checking to prevent the insertion of a nonex-
istent node into the queue. The cases when the queue i1s empty or not must be
treated separately, since the addition of a node to an empty queue requires setting

both the front and the rear to the new node, whereas addition to a nonempty queue
requires changing only the rear.

To remove a node from the front of a queue, we use the following function:

I* ServeNode: remove the first entry in the queue.

Pre: The linked queue q has been created and is not empty.

Post: The first node in the queue has been removed and parameter p points to this
node. g

Uses: QueueEmpty, Error. */
void ServeNode(QueueNode #«p, Queue *q)

{
If (QueueEmpty(q))
Error(" Attempt to delete a node from an empty queue.");
else {
p = q->front; I Pull off the front entry of the queue. #f
q->front = g->front->next; /* Advance front of queue lo the next node. “f
if (QueueEmpty(q)) I Is the queue now empty? «/
q->rear = NULL:
}
}

The #+ in front of the argument p indicates that the function expects ‘a pointer to a
pointer.” Thatis, the function receives a reference to a pointer; this is also commonly
referred to as ‘the address of a pointer.” (For more information on references see
Appendix C.)

Again the possibility of an empty queue must be considered separately. Itis an
error to attempt deletion from an empty queue. It is, however, not an error for the
queue to become empty after a deletion, but then the rear and front should both
become NULL to indicate clearly that the queue is empty.

If you compare these algorithms for linked queues with those needed for con-
tiguous queues, you will see that the linked versions are both conceptually simpler
and easier to program.

The functions we have developed process nodes; to enable us to change easily
between contiguous and linked implementations of queues, we also need versions
of functions Append and Serve that will process entries directly for linked queues.
We leave writing these functions as exercises, along with the remaining functions
for processing queues: CreateQueue, ClearQueue, QueueEmpty, QueueFull, Queue-
Size, QueueFront, and QueueFrontNode

