
Replication of Positive Strand RNA Viruses (Polio)

By- Dr. Ekta Khare Department of Microbiology, Chhatrapati Shahu Ji Maharaj University, Kanpur

Positive Strand RNA Virus

- Positive strand RNA viruses are the single largest group of RNA viruses with 30 families.
- Important examples of +ssRNA viruses are severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), Hepatovirus A and polio virus, which cause corona, hepatitis A and poliomyelitis, respectively.
- Polioviruses are single-stranded RNA viruses belonging to the family Picornaviridae.
- They have a naked icohedral protein capsid with a dense central core. The capsid consists of four structural proteins, VP1, VP2, VP3, and VP4.
- The poliovirus genome consists of ~7500 nucleotides and contains a poly(A) tail at the 3' end and a small peptide, VPg, covalently linked to the 5' end.
- The highly structured 5' untranslated region (UTR) regulates both translation and RNA replication.
- Two functional regions have been described within the 5' UTR:
 - a long element involved in cap-independent initiation of translation (IRES)
 - a shorter 5'-terminal structure (the cloverleaf RNA) involved in viral RNA replication

Stem loop

- The genome of a positive strand RNA virus, unlike that of any other virus or organism, must function both as the repository of genetic information (i.e., as the genome) and also as a messenger RNA.
- Thus, the virus must coordinate the mutually exclusive activities of translation, RNA replication and encapsidation, all of which occur on the same genomic RNA molecule, but not at the same time.

Translation

- To initiate infection virion attaches to specific receptor on the surface of a sensitive cell and enters the cell.
- Inside cell virus particle uncoated
- Free RNA associates with ribosomes
- 5' end of poliovirus RNA has a long sequence that can fold into several stem loops.
- VPg protein and stem loops mimic the cap binding protein, permit binding of the viral mRNA to the ribosome.
- Viral RNA (monocistronic) but codes for all the proteins of the virus in a single protein called polyprotein (2200 amino acids).
- Polyprotein post-translational cleaved into ~ 20 small proteins (including VPg, RNA replicase).

Replication of Poliovirus RNA

- Short time after infection replicate by RNA replicase.
- Transcribes positive sense viral RNA into a complementary RNA molecule of negative complementarity.
- Negative strand now template for repeated transcription of progeny positive strands catalyzed by viral-specific RNA replicase.
- Some positive strains again transcribe ~1000 negative strands, responsible for synthesis of millions positive strand.
- Both positive and negative strand linked to VPg protein (22 amino acids)
- Once poliovirus multiplication begins protein synthesis inhibited.
- Host protein synthesis stops as destruction of important host protein, Cap binding protein, required for translation of capped mRNAs.
- The genomes that are encapsidated directly after synthesis keep the VPg in 5', which may be part of the encapsidation signal.