Response Surface Method

Dr Meenakshi Gupta

Senior Lecturer
University Institute of Pharmacy

Response Surface Methodology

- The experimentation plays an important role in Science \& Engineering
- The experimentation carried out to experimental units result in measurement of one or more responses.
- results and conclusions can be drawn by experiment
- The approximation of the response function $y=f(x 1, x 2, \ldots, x q)+\varepsilon$ is called Response Surface Methodology.

Response Surface Method

- The response surface methodology (RSM) is a widely used mathematical and statistical method for modeling and analyzing a process in which the response of interest is affected by various variables
- The first goal for Response Surface Method is to find the optimum response.
- The second goal is to understand how the response changes in a given direction by adjusting the design variables.
- In general, the response surface can be visualized graphically.
- The graph is helpful to see the shape of a response surface; hills, valleys, and ridge lines.

The function $f\left(x_{1}, x_{2}\right)$ can be plotted versus the levels of x_{1} and x_{2} as shown as Figure.
This three-dimensional graph shows the response surface from the side and it is called a response surface plot.

- The contour plots can show contour lines of x_{1} and x_{2} pairs that have the same response value y.
- To understand the surface of a response, graphs are helpful tools.
- But, when there are more than two independent variables, graphs are difficult or almost impossible to use to illustrate the response surface, since it is beyond 3-dimension.
- For this reason, response surface models are essential for analyzing the unknown function f.

RSM = Response Surface Methodology; Introduction

\oplus It is a collection of statistical $\%$ mathematical techniques
© It is useful for developing optimizing process of new formulations
It is used to improving the existing formulations for still betterment
Consider there is 3 Factors $8 \% 5$ Levels in experiment
© Total possible runs are $3 \times 3 \times 3 \times 3 \times 3=243$ trials
\oplus Actually researcher to conduct 243 trials which takes long time 8% investment

RSM = Response Surface Methodology; Introduction

© But, If they use RSM, with the help of just 20 trials, he can get results of 243 trials
\oplus Hence, RSM saves lot of time 8% investment
\oplus It gives maximum information from minimum number of experiments
\oplus It screen out all factors at all possible levels, so it tests all possible runs
\oplus RSM can be used with the help of specialized following soft wares
© Example: Micro soft Excel, Minitab, Matrex, Omega, Design Expert etc.,

Surface Response Plots (SRP); Types of Presentation

4 Graphical presentation of all 243 trials can be done in three types
4 Type 1: SRP 3-D type
4 Type 2: SRP 2-D type (Contour Plot) (Circular Plots)
4 Type 3: SRP Combination of 3-D \& 2-D plots

Type 1: 3-D Type

Type 2 2 -D Type

Type 3:
Combination of 3-D Type 8\% 2-D Type

Surface Response Design (SRD); Types of Designs

4 Fractional Factorial Design
4 Full Factorial Design
4 Star Factorial Design
4 Replication Design
4 Central Composite Design

Central Composite Design (CCD)

4It is also called as "Box-Wilson Central Composite"
4 It important design as it suites to $\mathbf{2}^{\text {nd }}$ order reactions, empirical model
$\measuredangle C C D=$ A combination of Fractional Points + Set of Centre Points + Set of Star Points

- Contour plots (sometimes called Level Plots) are a way to show a three-dimensional surface on a two-dimensional plane.
- A contour plot allows you to visualize three-dimensional data in a two-dimensional plot.
- A contour plot is a graphical technique for representing a 3dimensional surface by plotting constant z slices, called contours, on a 2-dimensional format.
- That is, given a value for z, lines are drawn for connecting coordinates where that z value occurs.

Contour

A contour is an imaginary line joining points of equal elevation

Contour Interval

- The vertical distance between any two consecutive contours is known as contour interval

Characteristics of contour lines

- A series of contour lines with higher value inside indicate a hill
- A series of contour lines with lower value inside the loop always indicate depression
- Close contour lines indicate steep slope
- Wide contour lines indicate flatter slope
- Contour lines never cross each other except in cas overhanging cliff.

contour line joins points of equal and constant values.

