
SYNTAX ANALYSIS (PARSING) :Top Down Parsing

Ref: Aho, Sethi & Ullman, "Compilers: Principles, Techniques and Tools”, Pearson Education

4.1ROLE OF THE PARSER (SYNTAX ANALYSER) :

Parser for any grammar is program that takes as input string w (obtain set of strings tokens

from the lexical analyser) and produces as output either a parse tree for w , if w is a valid

sentences of grammar or error message indicating that w is not a valid sentences of given

grammar. The goal of the parser is to determine the syntactic validity of a source string is

valid, a tree is built for use by the subsequent phases of the computer. The tree reflects the

sequence of derivations or reduction used during the parser. Hence, it is called parse tree. If

string is invalid, the parse has to issue diagnostic message identifying the nature and cause

of the errors in string. Every elementary subtree in the parse tree corresponds to a

production of the grammar.

There are two ways of identifying an elementary subtree:

1. By deriving a string from a non-terminal or

2. By reducing a string of symbol to a non-terminal.

The two types of parsers employed are:

a. Top down parser: which build parse trees from top(root) to

bottom(leaves)

b. Bottom up parser: which build parse trees from leaves and work up

the root.

Fig. 4.1: position of parser in compiler model.

4.2 CONTEXT FREE GRAMMARS

Inherently recursive structures of a programming language are defined by a context-free

Grammar. In a context-free grammar, we have four triples G(V,T,P,S).

Here, V is finite set of terminals (in our case, this will be the set of tokens)

 T is a finite set of non-terminals (syntactic-variables)

 P is a finite set of productions rules in the following form

A → α where A is a non-terminal and α is a string of terminals and non-terminals

(including the empty string)

S is a start symbol (one of the non-terminal symbol)

L(G) is the language of G (the language generated by G) which is a set of sentences.

A sentence of L(G) is a string of terminal symbols of G. If S is the start symbol of G then

ω is a sentence of L(G) iff S ⇒ ω where ω is a string of terminals of G. If G is a context free

grammar, L(G) is a context-free language. Two grammar G1 and G2 are equivalent, if they

produce same grammar.

Consider the production of the form S ⇒ α, If α contains non-terminals, it is called as a

sentential form of G. If α does not contain non-terminals, it is called as a sentence of G.

4.2.1 Derivations

In general a derivation step is αAβ ⇒ αγβ is sentential form and if there is a production

rule A→γ in our grammar. where α and β are arbitrary strings of terminal and non-

terminal symbols α1 ⇒ α2 ⇒ ... ⇒ αn (αn derives from α1 or α1 derives αn). There are two

types of derivation

1 At each derivation step, we can choose any of the non-terminal in the sentential form of

G for the replacement.

2 If we always choose the left-most non-terminal in each derivation step, this derivation is

called as left-most derivation.

Example:

E → E + E | E – E | E * E | E / E | - E

E → (E) E

→ id

Leftmost derivation :

E → E + E

→ E * E+E →id* E+E→id*id+E→id*id+id

The string is derive from the grammar w= id*id+id, which is consists of all terminal

symbols

Rightmost derivation

E → E + E

→ E+E * E→E+ E*id→E+id*id→id+id*id

Given grammar G : E → E+E | E*E | (E) | - E | id

Sentence to be derived : – (id+id)

LEFTMOST DERIVATION RIGHTMOST DERIVATION

E → - E E → - E

E → - (E) E → - (E)

E → - (E+E) E → - (E+E)

E → - (id+E) E → - (E+id)

E → - (id+id) E → - (id+id)

• String that appear in leftmost derivation are called left sentinel forms.

• String that appear in rightmost derivation are called right sentinel forms.

Sentinels:

• Given a grammar G with start symbol S, if S → α , where α may contain non-

terminals or terminals, then α is called the sentinel form of G. Yield or frontier of tree:

• Each interior node of a parse tree is a non-terminal. The children of node can

be a terminal or non-terminal of the sentinel forms that are read from left to right. The

sentinel form in the parse tree is called yield or frontier of the tree.

4.2.2 PARSE TREE

• Inner nodes of a parse tree are non-terminal symbols.

• The leaves of a parse tree are terminal symbols.

• A parse tree can be seen as a graphical representation of a derivation.

Ambiguity:

A grammar that produces more than one parse for some sentence is said to be ambiguous

grammar.

Example: Given grammar G : E → E+E | E*E | (E) | - E | id The

sentence id+id*id has the following two distinct leftmost derivations:

E → E+ E E → E* E

E → id + E E → E + E * E

E → id + E * E E → id + E * E

E → id + id * E E → id + id * E

E → id + id * id E → id + id * id

The two corresponding parse trees are:

Example:

To disambiguate the grammar E → E+E | E*E | E^E | id | (E), we can use precedence of

operators as follows:

^ (right to left)

/,* (left to right) -

,+ (left to right) We get the following unambiguous

grammar:

E → E+T | T

T → T*F | F

F → G^F | G

G → id | (E)

Consider this example, G: stmt → if expr then stmt | if expr then stmt else stmt | other

This grammar is ambiguous since the string if E1 then if E2 then S1 else S2 has the

following

Two parse trees for leftmost derivation:

To eliminate ambiguity, the following grammar may be used:

stmt → matched_stmt | unmatched_stmt

matched_stmt → if expr then matched_stmt else matched_stmt | other

unmatched_stmt → if expr then stmt | if expr then matched_stmt else unmatched_stmt

Eliminating Left Recursion:

A grammar is said to be left recursive if it has a non-terminal A such that there is a

derivation A=>Aα for some string α. Top-down parsing methods cannot handle left-

recursive grammars.

Hence, left recursion can be eliminated as follows:

If there is a production A → Aα | β it can be replaced with a sequence of two productions

A → βA’

A’ → αA’ | ε

Without changing the set of strings derivable from A.

Example: Consider the following grammar for arithmetic expressions: E

→ E+T | T

T → T*F | F

F → (E) | id

First eliminate the left recursion for E as

E → TE’

E’ → +TE’ | ε

Then eliminate for T as

T → FT’

T’→ *FT’ | ε

Thus the obtained grammar after eliminating left recursion is

E → TE’

E’ → +TE’ | ε T

→ FT’

T’ → *FT’ | ε

F → (E) | id

Algorithm to eliminate left recursion:

1. Arrange the non-terminals in some order A1, A2 . . . An.

2. for i := 1 to n do begin for j := 1 to i-1 do begin replace each production of

the form Ai → Aj γ by the productions Ai → δ1 γ | δ2γ | . . . | δk γ

where Aj →δ1 | δ2 | . . . | δk are all the current Aj-productions;

end

eliminate the immediate left recursion among the Ai-productions

end

Left factoring:

Left factoring is a grammar transformation that is useful for producing a grammar suitable

for predictive parsing. When it is not clear which of two alternative productions to use to

expand a non-terminal A, we can rewrite the A-productions to defer the decision until we

have seen enough of the input to make the right choice.

If there is any production A → αβ1 | αβ2 , it can be rewritten as A

→ αA’

A’ → β1 | β2

Consider the grammar, G : S → iEtS | iEtSeS | a

E → b

Left factored, this grammar becomes

S → iEtSS’ | a

S’ → eS | ε

E → b

TOP-DOWN PARSING

It can be viewed as an attempt to find a left-most derivation for an input string or an

attempt to construct a parse tree for the input starting from the root to the leaves.

Types of top-down parsing:

1. Recursive descent parsing

2. Predictive parsing

1. RECURSIVE DESCENT PARSING

 Recursive descent parsing is one of the top-down parsing techniques that uses a set of

recursive procedures to scan its input.

 This parsing method may involve backtracking, that is, making repeated scans of the

input.

Example for backtracking:

Consider the grammar G : S → cAd

 A → ab | a

and the input string w=cad.

The parse tree can be constructed using the following top-down approach:

Step1:

Initially create a tree with single node labeled S. An input pointer points to ‘c’, the first

symbol of w. Expand the tree with the production of S.

Step2:

The leftmost leaf ‘c’ matches the first symbol of w, so advance the input pointer to the

second symbol of w ‘a’ and consider the next leaf ‘A’. Expand A using the first alternative.

Step3:

The second symbol ‘a’ of w also matches with second leaf of tree. So advance the input

pointer to third symbol of w ‘d’. But the third leaf of tree is b which does not match with the

input symbol d.

Hence discard the chosen production and reset the pointer to second position. This is called

backtracking.

Step4:

Now try the second alternative for A.

Now we can halt and announce the successful completion of parsing.

Example for recursive decent parsing:

A left-recursive grammar can cause a recursive-descent parser to go into an infinite loop.

Hence, elimination of left-recursion must be done before parsing.

Consider the grammar for arithmetic expressions

E → E+T | T

T → T*F | F

F → (E) | id

After eliminating the left-recursion the grammar becomes,

E → TE’

E’ → +TE’ | ε T

→ FT’

T’ → *FT’ | ε

F → (E) | id

Now we can write the procedure for grammar as follows:

Recursive procedure:

Procedure E() begin

T();

EPRIME();

End

Procedure EPRIME() begin

If input_symbol=’+’ then

ADVANCE();

T();

EPRIME(); end

Procedure T() begin

F();

TPRIME();

End

Procedure TPRIME() begin

If input_symbol=’*’ then

ADVANCE();

F();

TPRIME(); end

Procedure F() begin

If input-symbol=’id’ then ADVANCE(

);

else if input-symbol=’(‘ then

ADVANCE();

E(); else if input-symbol=’)’

then

ADVANCE();

end else ERROR();

Stack implementation:

PROCEDURE INPUT STRING

E() id+id*id

T() id+id*id

F() id+id*id

ADVANCE() id+id*id

TPRIME() id+id*id

EPRIME() id+id*id

ADVANCE() id+id*id

T() id+id*id

F() id+id*id

ADVANCE() id+id*id

TPRIME() id+id*id

ADVANCE() id+id*id

F() id+id*id

ADVANCE() id+id*id

TPRIME() id+id*id

2. PREDICTIVE PARSING

 Predictive parsing is a special case of recursive descent parsing where no backtracking

is required.

 The key problem of predictive parsing is to determine the production to be applied for

a non-terminal in case of alternatives.

Non-recursive predictive parser

The table-driven predictive parser has an input buffer, stack, a parsing table and an output

stream.

Input buffer:

It consists of strings to be parsed, followed by $ to indicate the end of the input string.

Stack:

It contains a sequence of grammar symbols preceded by $ to indicate the bottom of the

stack.

Initially, the stack contains the start symbol on top of $.

Parsing table:

It is a two-dimensional array M[A, a], where ‘A’ is a non-terminal and ‘a’ is a terminal.

Predictive parsing program:

The parser is controlled by a program that considers X, the symbol on top of stack, and a, the

current input symbol. These two symbols determine the parser action. There are three

possibilities:

1. If X = a = $, the parser halts and announces successful completion of parsing.

2. If X = a ≠ $, the parser pops X off the stack and advances the input pointer to

the next input symbol.

3. If X is a non-terminal , the program consults entry M[X, a] of the parsing

table M. This entry will either be an X-production of the grammar or an error

entry.

If M[X, a] = {X → UVW},the parser replaces X on top of the stack by UVW If

M[X, a] = error, the parser calls an error recovery routine.

Algorithm for nonrecursive predictive parsing:

Input : A string w and a parsing table M for grammar G.

Output : If w is in L(G), a leftmost derivation of w; otherwise, an error indication.

Method : Initially, the parser has $S on the stack with S, the start symbol of G on top, and

w$ in the input buffer. The program that utilizes the predictive parsing table M to produce a

parse for the input is as follows:

set ip to point to the first symbol of w$; repeat let X be the top stack

symbol and a the symbol pointed to by ip; if X is a terminal or $ then

if X = a then pop X from the stack and advance ip

else error()

else /* X is a non-terminal */ if M[X, a] = X

→Y1Y2 … Yk then begin pop X from the

stack;

push Yk, Yk-1, … ,Y1 onto the stack, with Y1 on top;

output the production X → Y1 Y2 . . . Yk

end else

error()

until X = $

Predictive parsing table construction:

The construction of a predictive parser is aided by two functions associated with a grammar

G :

1. FIRST

2. FOLLOW

Rules for first():

1. If X is terminal, then FIRST(X) is {X}.

2. If X → ε is a production, then add ε to FIRST(X).

3. If X is non-terminal and X → aα is a production then add a to FIRST(X).

4. If X is non-terminal and X → Y1 Y2…Yk is a production, then place a in FIRST(X) if for some
i, a is in FIRST(Yi), and ε is in all of FIRST(Y1),…,FIRST(Yi-1); that is, Y1,….Yi-1 => ε. If ε is in
FIRST(Yj) for all j=1,2,..,k, then add ε to FIRST(X).

Rules for follow():

1. If S is a start symbol, then FOLLOW(S) contains $.

2. If there is a production A → αBβ, then everything in FIRST(β) except ε is placed in

follow(B).

3. If there is a production A → αB, or a production A → αBβ where FIRST(β) contains ε, then

everything in FOLLOW(A) is in FOLLOW(B).

Algorithm for construction of predictive parsing table:

Input : Grammar G

 Output : Parsing table M

Method :

1. For each production A → α of the grammar, do steps 2 and 3.

2. For each terminal a in FIRST(α), add A → α to M[A, a].

3. If ε is in FIRST(α), add A → α to M[A, b] for each terminal b in FOLLOW(A). If ε is in

FIRST(α) and $ is in FOLLOW(A) , add A → α to M[A, $].

4. Make each undefined entry of M be error.

Example:

Consider the following grammar :

E → E+T | T

T → T*F | F

F → (E) | id

After eliminating left-recursion the grammar is

E → TE’

E’ → +TE’ | ε T

→ FT’

T’ → *FT’ | ε F

→ (E) | id

 First() :

FIRST(E) = { (, id}

FIRST(E’) ={+ , ε }

FIRST(T) = { (, id}

FIRST(T’) = {*, ε } FIRST(F) =

{, id }

Follow():

FOLLOW(E) = { $,) }

FOLLOW(E’) = { $,) }

FOLLOW(T) = { +, $,) }

FOLLOW(T’) = { +, $,) } FOLLOW(F) = {+,

* , $,) }

LL(1) grammar:

The parsing table entries are single entries. So each location has not more than one entry.

This type of grammar is called LL(1) grammar.

Consider this following grammar:

S → iEtS | iEtSeS | a E

→ b

After eliminating left factoring, we have

S → iEtSS’ | a S’→

eS | ε

E → b

To construct a parsing table, we need FIRST() and FOLLOW() for all the non-terminals.

FIRST(S) = { i, a }

FIRST(S’) = {e, ε }

FIRST(E) = { b}

FOLLOW(S) = { $,e }

FOLLOW(S’) = { $,e }

FOLLOW(E) = {t}

Since there are more than one production, the grammar is not LL(1) grammar.

Actions performed in predictive parsing:

1. Shift

2. Reduce

3. Accept

4. Error

Implementation of predictive parser:

1. Elimination of left recursion, left factoring and ambiguous grammar.

2. Construct FIRST() and FOLLOW() for all non-terminals.

3. Construct predictive parsing table.

4. Parse the given input string using stack and parsing table.

