Statistics: Definition, Importance, Limitation

Statistics is a form of mathematical analysis that uses quantified models, representations and synopses for a given set
of experimental data or real-life studies. Statistics studies methodologies to gather, review, analyze and draw
conclusions from data. Some statistical measures include mean, regression analysis, skewness, kurtosis, variance and
analysis of variance.

Statistics is a term used to summarize a process that an analyst uses to characterize a data set. If the data set depends
on a sample of a larger population, then the analyst can develop interpretations about the population primarily based
on the statistical outcomes from the sample. Statistical analysis involves the process of gathering and evaluating data
and then summarizing the data into a mathematical form.

Statistical methods analyze large volumes of data and their properties. Statistics is used in various disciplines such as
psychology, business, physical and social sciences, humanities, government and manufacturing. Statistical data is
gathered using a sample procedure or other methods. Two types of statistical methods are used in analyzing data:
descriptive statistics and inferential statistics. Descriptive statistics are used to synopsize data from a sample exercising
the mean or standard deviation. Inferential statistics are used when data is viewed as a subclass of a specific
population.

Importance and Scope of Statistics
(i) Statistics in Planning

Statistics is indispensable in planning—may it be at business, economics or government level. The modern age is
termed as the 'age of planning' and almost all organizations in the government or business or management are
resorting to planning for efficient working and for formulating policy decisions.

To achieve this end, the statistical data relating to production, consumption, birth, death, investment, and income are
of paramount importance. Today efficient planning is a must for almost all countries, particularly developing
economies for their economic development.

(i) Statistics in Mathematics

Statistics is intimately related to and essentially dependent upon mathematics. The modern theory of Statistics has its
foundations in the theory of probability which in turn is a particular branch of more advanced mathematical theory of
Measures and Integration. Ever increasing role of mathematics in statistics has led to the development of a new branch
of statistics called Mathematical Statistics.

Thus, Statistics may be considered to be an important member of the mathematics family. In the words of Connor,
"Statistics is a branch of applied mathematics which specializes in data."

(iii) Statistics in Economics

Statistics and Economics are so intermixed with each other that it looks foolish to separate them. DeveThe
development modern statistical methods has led to an extensive use of statistics in Economics.

All the important branches of Economics—consumption, production, exchange, distribution, public finance—use
statistics for the purpose of comparison, presentation, interpretation, etc. Problem of spending of income on and by
different sections of the people, production of national wealth, adjustment of demand and supply, effect of economic
policies on the economy etc. simply indicate the importance of statistics in the field of economics and in its different
branches.

Statistics of Public Finance enables us to impose tax, to provide subsidy, to spend on various heads, amount of money
to be borrowed or lent etc. So we cannot think of Statistics without Economics or Economics without Statistics.

(iv) Statistics in Social Sciences



Every social phenomenon is affected to a marked extent by a multiplicity of factors which bring out the variation in
observations from time to time, place to place and object to object. Statistical tools of Regression and Correlation
Analysis can be used to study and isolate the effect of each of these factors on the given observation.

Sampling Techniques and Estimation Theory are very powerful and indispensable tools for conducting any social
survey, pertaining to any strata of society and then analyzing the results and drawing valid inferences. The most
important application of statistics in sociology is in the field of Demography for studying mortality (death rates),
fertility (birth rates), marriages, population growth and so on.

(v) Statistics in Trade

As already mentioned, statistics is a body of methods to make wise decisions in the face of uncertainties. Business is
full of uncertainties and risks. We have to forecast at every step. Speculation is just gaining or losing by way of
forecasting. Can we forecast without taking into view the past? Perhaps, no. The future trend of the market can only
be expected if we make use of statistics. Failure in anticipation will mean failure of business.

Changes in demand, supply, habits, fashion etc. can be anticipated with the help of statistics. Statistics is of utmost
significance in determining prices of the various products, determining the phases of boom and depression etc. Use of
statistics helps in smooth running of the business, in reducing the uncertainties and thus contributes towards the
success of business.

(vi) Statistics in Research Work

The job of a research worker is to present the result of his research before the community. The effect of a variable on
a particular problem, under differing conditions, can be known by the research worker only if he makes use of
statistical methods. Statistics are everywhere basic to research activities. To keep alive his research interests and
research activities, the researcher is required to lean upon his knowledge and skills in statistical methods.

Limitations of Statistics

Statistics is a mathematical science pertaining to the collection, analysis, interpretation or explanation, and
presentation of data. Statisticians improve the quality of data with the design of experiments and survey sampling.

(i) Statistics does not deal with isolated measurement

(ii) Statistics deals with only quantitative characteristics

(iii) Statistics laws are true on average. Statistics are aggregates of facts. So single observation is not a statistics, it deals
with groups and aggregates only.

(iv) Statistical methods are best applicable on quantitative data.

(v) Statistical cannot be applied to heterogeneous data.

(vi) It sufficient care is not exercised in collecting, analyzing and interpreting the data, statistical results might be
misleading.

(vii) Only a person who has expert knowledge of statistics can handle statistical data efficiently.

(viii) Some errors are possible in statistical decisions. Particularly inferential statistics involves certain errors. We do
not know whether an error has been committed or not.

Measures of Central Tendency: Mean, Median, and Mode

A measure of central tendency is a summary statistic that represents the centre point or typical value of a dataset.
These measures indicate where most values in a distribution fall and are also referred to as the central location of a
distribution. You can think of it as the tendency of data to cluster around a middle value. In statistics, the three most



common measures of central tendency are the mean, median, and mode. Each of these measures calculates the
location of the central point using a different method.

The mean, median and mode are all valid measures of central tendency, but under different conditions, some
measures of central tendency become more appropriate to use than others. In the following sections, we will look at
the mean, mode and median, and learn how to calculate them and under what conditions they are most appropriate
to be used.

MEAN (ARITHMETIC)

The mean (or average) is the most popular and well-known measure of central tendency. It can be used with both
discrete and continuous data, although its use is most often with continuous data (see our Types of Variable guide for
data types). The mean is equal to the sum of all the values in the data set divided by the number of values in the data
set. So, if we have n values in a data set and they have values Xi, X;, Xs... Xn, the sample mean, usually denoted by
(pronounced x bar), is:
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This formula is usually written in a slightly different manner using the Greek capital letter, , pronounced "sigma", which
means "sum of...".
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You may have noticed that the above formula refers to the sample mean. So, why have we called it a sample mean?
This is because, in statistics, samples and populations have very different meanings and these differences are very
important, even if, in the case of the mean, they are calculated in the same way. To acknowledge that we are
calculating the population mean and not the sample mean, we use the Greek lowercase letter “mu", denoted as p:
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The mean is essentially a model of your data set. It is the value that is most common. You will notice, however, that
the mean is not often one of the actual values that you have observed in your data set. However, one of its important
properties is that it minimizes error in the prediction of any one value in your data set. That is, it is the value that
produces the lowest amount of error from all other values in the data set.

An important property of the mean is that it includes every value in your data set as part of the calculation. In addition,
the mean is the only measure of central tendency where the sum of the deviations of each value from the mean is
always zero.

MEDIAN

The median is the middle score for a set of data that has been arranged in order of magnitude. The median is less
affected by outliers and skewed data. In order to calculate the median, suppose we have the data below:

65 55 89 56 35 14 56 55 87 45 92

We first need to rearrange that data into order of magnitude (smallest first):



14 35 45 55 55 56 56 65 87 89 92

Our median mark is the middle mark — in this case, 56 (highlighted in bold). It is the middle mark because there are 5
scores before it and 5 scores after it. This works fine when you have an odd number of scores, but what happens when
you have an even number of scores? What if you had only 10 scores? Well, you simply have to take the middle two
scores and average the result. So, if we look at the example below:

14 35 45 55 55 56 56 65 87 89

Only now we have to take the 5th and 6th score in our data set and average them to get a median of 55.5.
MODE

The mode is the most frequent score in our data set. On a histogram, it represents the highest bar in a bar chart or
histogram. You can, therefore, sometimes consider the mode as being the most popular option. An example of a mode
is presented below:

B Mode _
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Partition Values: Quartile, Deciles, Percentiles

Partition values or fractiles such a quartile, a decile, etc. are the different sides of the same story. In other words, these
are values that divide the same set of observations in different ways. So, we can fragment these observations into
several equal parts.

QUARTILE

Whenever we have an observation and we wish to divide it, there is a chance to do it in different ways. So, we use the
median when a given observation is divided into two parts that are equal. Likewise, quartiles are values that divide a
complete given set of observations into four equal parts.

Basically, there are three types of quartiles, first quartile, second quartile, and third quartile. The other name for the
first quartile is lower quartile. The representation of the first quartile is 'Ql.' The other name for the second quartile is
median.



The representation of the second quartile is by 'Q2 .c The other name for the third quartile is the upper quartile. The
representation of the third quartile is by 'Q3."

First Quartile is generally the one-fourth of any sort of observation. However, the point to note here is, this one-fourth
value is always less than or equal to 'Ql."' Similarly, it goes for the values of 'Q2' and 'Q3.’

DECILES

Deciles are those values that divide any set of a given observation into a total of ten equal parts. Therefore, there are
a total of nine deciles. These representations of these deciles are as follows — D1, D2, D3, D4, D9.

D1 is the typical peak value for which one-tenth (1/10) of any given observation is either less or equal to DI. However,
the remaining nine-tenths(9/10) of the same observation is either greater than or equal to the value of DI.

PERCENTILES

Last but not the least, comes the percentiles. The other name for percentiles is centiles. A centile or a percentile
basically divides any given observation into a total of 100 equal parts. The representation of these percentiles or
centiles is given as —PI, P2, P3, P4, P99.

P1 is the typical peak value for which one-hundredth (1/100) of any given observation is either less or equal to PI.
However, the remaining ninety-nine-hundredth (99/100) of the same observation is either greater than or equal to
the value of PI.

This takes place once all the given observations are arranged in a specific manneri.e., ascending order. So, in case the
data we have doesn't have a proper classification, then the representation of the p'" quartile is (n + 1 )p*"

Here,

n = total number of observations.

p = 1/4, 2/4, 3/4 for different values of Ql, Q2, and Q3 respectively.

p =1/10, 2/10, .... 9/10 for different values of DI, D2, D9 respectively.

p =1/100, 2/100, .... 99/100 for different values of PIl, P2, P99 respectively.

Formula

At times, the grouping of frequency distribution takes place. For which, we use the following formula during the

computation:

Q=1+ [(Np— Ni)/(Nu-Ni)] *C

Here,

|1 = lower class boundary of the specific class that contains the median.

Ni = less than the cumulative frequency in correspondence to 11 (Post Median Class)
Nu = less than the cumulative frequency in correspondence to 12 (Pre Median Class)
C = Length of the median class

The symbol 'p' has its usual value. The value of 'p' varies completely depending on the type of quartile. There are
different ways to find values or quartiles. We use this way in a grouped frequency distribution. The best way to do it
is by drawing an ogive for the present frequency distribution.

Hence, all that we need to do to find one specific quartile is, find the point and draw a horizontal axis through the
same. This horizontal line must pass through Np. The next step is to draw a perpendicular. The perpendicular comes



up from the same point of intersection of the ogive and the horizontal line. Hence, the value of the quartile comes
from the value of 'x' of the given perpendicular line.

Measures of Variation: Range, IQR

A measure of variation is a summary statistic that represents the amount of dispersion in a dataset. While a measure
of central tendency describes the typical value, measures of variability define how far away the data points tend to
fall from the centre. We talk about variability in the context of a distribution of values. A low dispersion indicates that
the data points tend to be clustered tightly around the centre. High dispersion signifies that they tend to fall further
away.

In statistics, variability, dispersion, and spread are synonyms that denote the width of the distribution. Just as there
are multiple measures of central tendency, there are several measures of variability.

RANGE

Let's start with the range because it is the most straightforward measure of variability to calculate and the simplest to
understand. The range of a dataset is the difference between the largest and smallest values in that dataset. For
example, in the two datasets below, dataset 1 has a range of 20 — 38 = 18 while dataset 2 has a range of 11 — 52 =
41. Dataset 2 has a wider range and, hence, more variability than dataset 1.

|Dataset 1 Dataset 2

% 20 11
21 16
22 19
25 23
26 25
29 32
33 39
34 46
38 52

While the range is easy to understand, it is based on only the two most extreme values in the dataset, which makes
it very susceptible to outliers. If one of those numbers is unusually high or low, it affects the entire range even if it is
atypical.

Additionally, the size of the dataset affects the range. In general, you are less likely to observe extreme values.
However, as you increase the sample size, you have more opportunities to obtain these extreme values.
Consequently, when you draw random samples from the same population, the range tends to increase as the sample
size increases. Consequently, use the range to compare variability only when the sample sizes are similar.

THE INTERQUARTILE RANGE (IQR)

The interquartile range is the middle half of the data. To visualize it, think about the median value that splits the
dataset in half. Similarly, you can divide the data into quarters. Statisticians refer to these quarters as quartiles and
denote them from low to high as Q1, Q2, Q3, and Q4. The lowest quartile (Q1) contains the quarter of the dataset
with the smallest values. The upper quartile (Q4) contains the quarter of the dataset with the highest values. The
interquartile range is the middle half of the data that is in between the upper and lower quartiles. In other words,
the interquartile range includes the 50% of data points that fall in Q2 and

The IQR is the red area in the graph below.
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The interquartile range is a robust measure of variability in a similar manner that the median is a robust measure of
centra tendency. Neither measure is influenced dramatically by outliers because they don't depend on every value.
Additionally, the interquartile range is excellent for skewed distributions, just like the median. As you'll learn, when
you have a normal distribution, the standard deviation tells you the percentage of observations that fall specific
distances from the mean. However, this doesn't work for skewed distributions, and the IQR is a great alternative.

I've divided the dataset below into quartiles. The interquartile range (IQR) extends from the low end of Q2 to the
upper limit of Q3. For this dataset, the range is 21-39.

QR

19| Q1




Mean Deviation and Standard Deviation

Mean Deviation

To understand the dispersion of data from a measure of central tendency, we can use mean deviation. It comes as an
improvement over the range. It basically measures the deviations from a value. This value is generally mean or median.
Hence although mean deviation about mode can be calculated, mean deviation about mean and median are frequently

used.

Note that the deviation of an observation from a value a is d= x-a. To find out mean deviation we need to take the mean of
these deviations. However, when this value of a is taken as mean, the Eeviations are both negative and positive since it is
the central value.

This further means that when we sum up these deviations to find out their average, the sum essentially vanishes. Thus to
resolve this problem we use absolute values or the magnitude of deviation. The basic formula for finding out mean

deviationis:

Mean deviation= Sum of absolute values of deviations from ‘a’ + The number of observations

Standard Deviation

As the name suggests, this quantity is a standard measure of the deviation of the entire data in any distribution. Usually
represented by s or o. It uses the arithmetic mean of the distribution as the reference point and normalizes the deviation of

all the data values from this mean.

Therefore, we define the formula for the standard deviation of the distribution of a variable X with n data points as:

This formula can sometimes be useful in this alternate form as well —

2
| Xx;
s=4|—-7%

n

Also, sometimes if appropriate for a frequency distribution f(X), we can compute the

standard deviation as —

Alternatively -
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Variance, Coefficient of Variance

Variance

Another statistical term that is related to the distribution is the variance, which is the standard deviation squared (variance
= SD? ). The SD may be either positive or negative in value because it is calculated as a square root, which can be either
positive or negative. By squaring the SD, the problem of signs is eliminated. One common application of the variance is its
use in the F-test to compare the variance of two methods and determine whether there is a statistically significant
difference in the imprecision between the methods.

In many applications, however, the SD is often preferred because it is expressed in the same concentration units as the data.
Using the SD, it is possible to predict the range of control values that should be observed if the method remains stable. As
discussed in an earlier lesson, laboratorians often use the SD to impose “gates” on the expected normal distribution of
control values.

Coefficient of Variation

Another way to describe the variation of a test is calculate the coefficient of variation, or CV. The CV expresses the variation
as a percentage of the mean, and is calculated as follows:

CV% = (SD/Xbar)100

In the laboratory, the CV is preferred when the SD increases in proportion to concentration. For example, the data from a
replication experiment may show an SD of 4 units at a concentration of 100 units and an SD of 8 units at a concentration of
200 units. The CVs are 4.0% at both levels and the CV is more useful than the SD for describing method performance at
concentrations in between. However, not all tests will demonstrate imprecision that is constant in terms of CV. For some
tests, the SD may be constant over the analytical range.

The CV also provides a general “feeling” about the performance of a method. CVs of 5% or less generally give us a feeling of
good method performance, whereas CVs of 10% and higher sound bad. However, you should look carefully at the mean
value before judging a CV. At very low concentrations, the CV may be high and at high concentrations the CV may be low. For
example, a bilirubin test with an SD of 0.1 mg/dL at a mean value of 0.5 mg/dL has a CV of 20%, whereas an SD of 1.0 mg/dL
ataconcentration of 20 mg/dL corresponds to a CV of 5.0%.

Skewness ant Types

Skewness, in statistics, is the degree of distortion from the symmetrical bell curve, or normal distribution, in a set of data.
Skewness can be negative, positive, zero or undefined. A normal distribution has a skew of zero, while
alognormal distribution, for example, would exhibit some degree of right-skew.

The three probability distributions depicted below depict increasing levels of right (or positive) skewness. Distributions can
also be left (negative) skewed. Skewness is used along with kurtosis to better judge the likelihood of events falling in the
tails of a probability distribution.
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Key Takeaways

¢ Skewness, in statistics, is the degree of distortion from the symmetrical bell curve in a probability
distribution.

* Distributions can exhibit right (positive) skewness or left (negative) skewness to varying degree.

¢ Investors note skewness when judging a return distribution because it, like kurtosis, considers the extremes of the
data set rather than focusing solely on the average.

Broadly speaking, there are two types of skewness: They are

(1) Positive skewness and

(2) Negative skewness.

Positive skewness

A series is said to have positive skewness when the following characteristics are noticed:
¢ Mean > Median > Mode.

* The right tail of the curve is longer than its left tail when the data are plotted through a histogram or a frequency
polygon.

* The formula of Skewness and its coefficient give positive figures.

Negative skewness

A series is said to have negative skewness when the following characteristics are noticed:
¢ Mode> Median > Mode.

* The left tail of the curve is longer than the right tail, when the data are plotted through a histogram, or a frequency
polygon.

¢ The formula of skewness and its coefficient give negative figures.
Thus, a statistical distribution may be three types viz.

Symmetric

Positively skewed

Negatively skewed



Kurtosis

Kurtosis is a statistical measure that defines how heavily the tails of a distribution differ from the tails of a normal
distribution. In other words, kurtosis identifies whether the tails of a given distribution contain extreme values.
Along with skewness, kurtosis is an important descriptive statistic of data distribution. However, the two concepts
must not be confused with each other. Skewness essentially measures the symmetry of the distribution while
kurtosis determines the heaviness of the distribution tails.

In finance, kurtosis is used as a measure of financial risk. A large kurtosis is associated with a high level of risk of an
investment because it indicates that there are high probabilities of extremely large and extremely small returns. On
the other hand, a small kurtosis signals a moderate level of risk because the probabilities of extreme returns are
relatively low.

Excess Kurtosis

An excess kurtosis is a metric that compares the kurtosis of a distribution against the kurtosis of a normal
distribution. The kurtosis of a normal distribution equals 3. Therefore, the excess kurtosis is found using the formula
below:

Excess Kurtosis = Kurtosis — 3

Types of Kurtosis

The types of kurtosis are determined by the excess kurtosis of a particular distribution. The excess kurtosis can take
positive or negative values as well, as values close to zero.

1. Mesokurtic

Data that follows a mesokurtic distribution shows an excess kurtosis of zero or close to zero. It means that if the data
follows a normal distribution, it follows a mesokurtic distribution.

2. Leptokurtic

Leptokurtic indicates a positive excess kurtosis distribution. The leptokurtic distribution shows heavy tails on either
side, indicating the large outliers. In finance, a leptokurtic distribution shows that the investment returns may be
prone to extreme values on either side. Therefore, an investment whose returns follow a leptokurtic distribution is
considered to be risky.

N\




3. Platykurtic

A platykurtic distribution shows a negative excess kurtosis. The kurtosis reveals a distribution with flat tails. The flat tails
indicate the small outliers in a distribution. In the finance context, the platykurtic distribution of the investment returns is

desirable for investors because there is a small probability that the investment would experience extreme returns.




Unit 2: Correlation & Regression Analysis

Correlation analysis

Correlation analysis is a statistical method used to measure the relationship between two or more variables. The
goal of correlation analysis is to determine whether there is a relationship between two variables and if so, to what
extent.

Correlation analysis is typically used when we have two or more continuous variables, such as height and weight, or
temperature and humidity. The strength and direction of the relationship between two variables can be measured
by calculating the correlation coefficient.

The most commonly used correlation coefficient is Pearson's correlation coefficient, which ranges from -1 to +1. A
coefficient of +1 indicates a perfect positive correlation, while a coefficient of -1 indicates a perfect negative
correlation. A coefficient of 0 indicates no correlation between the two variables.

Correlation analysis can be used in a variety of fields, such as psychology, economics, and biology, to investigate the
relationship between variables and to help make predictions or inform decision-making. However, correlation does
not necessarily imply causation, and other factors may be responsible for the observed correlation. Therefore, it is
important to use caution when interpreting the results of correlation analysis.

The properties of correlation are as follows:

Correlation coefficient ranges from -1 to +1: The correlation coefficient is a standardized measure that ranges from -
1to +1. A correlation of -1 indicates a perfect negative correlation, while a correlation of +1 indicates a perfect
positive correlation. A correlation coefficient of 0 indicates no correlation between the two variables.

Correlation is symmetric: The correlation between two variables is always symmetric, which means that the
correlation between variable A and variable B is the same as the correlation between variable B and variable A.

Correlation is affected by outliers: Correlation can be affected by outliers, which are data points that are far away
from the rest of the data. Outliers can artificially inflate or deflate the correlation coefficient and can lead to
erroneous conclusions.

Correlation does not imply causation: Correlation does not imply causation, which means that just because two
variables are correlated, it does not necessarily mean that one causes the other. Other factors may be responsible
for the observed correlation.

Correlation is affected by scale: Correlation is affected by the scale of measurement of the variables. For example, if
one variable is measured in inches and the other variable is measured in centimeters, the correlation coefficient will
be affected by the difference in scale.

Correlation can be influenced by sample size: The correlation coefficient can be influenced by sample size, with
larger sample sizes leading to more accurate estimates of the true correlation between variables.

Correlation is not affected by the units of measurement: Correlation is a unitless measure, which means that it is
not affected by the units of measurement used for the variables. For example, the correlation between height and
weight will be the same whether height is measured in inches or centimeters.

Karl Pearson's coefficient of correlation:

Karl Pearson's coefficient of correlation, also known as Pearson's correlation coefficient or simply Pearson'sr, is a
measure of the linear relationship between two continuous variables. Pearson's r ranges from -1 to +1, with a value



of +1 indicating a perfect positive correlation, a value of 0 indicating no correlation, and a value of -1 indicating a
perfect negative correlation.

Pearson's correlation coefficient is calculated as the covariance between the two variables divided by the product of
their standard deviations. The formula for Pearson's ris:

r=(Z(xi-x)(yi-y))/((n-1)*s_x*s_y)
where:

2 represents the sum of the values

xi is the value of variable x for observation i
x is the mean of variable x

yi is the value of variable y for observation i
y is the mean of variable y

n is the number of observations

s_xis the standard deviation of variable x
s_y is the standard deviation of variable y

Pearson's correlation coefficient is widely used in many fields of research, including psychology, biology, economics,
and engineering, to measure the strength and direction of the relationship between two continuous variables.
However, Pearson's r only measures linear relationships and may not capture non-linear relationships or
relationships between variables that are not normally distributed.

There are several assumptions associated with Pearson's correlation coefficient:

Linearity: The relationship between the two variables being correlated should be linear, which means that the
relationship should be roughly equal across the range of both variables.

Normality: Both variables should be normally distributed, or at least approximately normally distributed. This is
important because Pearson's correlation coefficient assumes that the variables are normally distributed.

Homoscedasticity: Homoscedasticity refers to the assumption that the variance of the two variables should be
roughly equal across the range of both variables.

Independence: The observations of the two variables being correlated should be independent of each other. In
other words, the value of one variable should not depend on the value of the other variable.

Outliers: Pearson's correlation coefficient is sensitive to outliers, which can lead to inaccurate estimates of the
correlation coefficient. Therefore, it is important to check for outliers before using Pearson's correlation coefficient.

Range of scores: Pearson's correlation coefficient is also sensitive to the range of scores of the two variables being
correlated. If the range of scores is too narrow, it may be difficult to detect a relationship between the two variables.

Violations of these assumptions can affect the accuracy and interpretation of Pearson's correlation coefficient.
Therefore, it is important to check for these assumptions before using Pearson's correlation coefficient and to
consider alternative methods of analysis if any of these assumptions are violated.

Spearman's rank correlation coefficient



Spearman's rank correlation coefficient is a non-parametric measure of the monotonic relationship between two
variables. It is often used as an alternative to Pearson's correlation coefficient when the assumption of normality is
not met, or when the relationship between the variables is not linear.

Spearman's rank correlation coefficient is based on the ranks of the data, rather than the actual values. The formula
for Spearman's rank correlation coefficient is:

end
X n(n? — 1)

P = Spearman's rank correlation coefficient

p

_ _ difference between the two ranks of each
* ~ observation

T = number of observations

Spearman's rank correlation coefficient ranges from -1 to +1, with a value of +1 indicating a perfect positive
monotonic relationship, a value of 0 indicating no monotonic relationship, and a value of -1 indicating a perfect
negative monotonic relationship.

The assumptions for using Spearman's rank correlation coefficient are less stringent than those for Pearson's
correlation coefficient. Spearman's rank correlation coefficient does not assume that the data are normally
distributed, and it is less sensitive to outliers. However, Spearman's rank correlation coefficient assumes that the
relationship between the variables is monotonic, rather than linear.

Spearman's rank correlation coefficient is commonly used in fields such as psychology, social sciences, and biology to
measure the relationship between two variables when the assumptions for using Pearson's correlation coefficient
are not met.

Assumptions of Spearman’s Rank Correlation:

Spearman's rank correlation coefficient is a non-parametric measure of correlation and therefore, does not make
any assumptions about the distribution of the data. However, there are some assumptions related to the use of
Spearman's rank correlation coefficient, which are:

Independence: The observations of the two variables being correlated should be independent of each other. In
other words, the value of one variable should not depend on the value of the other variable.

Monotonicity: The relationship between the two variables should be monotonic, which means that the relationship
should be either strictly increasing or decreasing. The strength of the monotonic relationship is measured by the
Spearman's rank correlation coefficient.

Rankability: The two variables should be capable of being ranked. This means that there should be no ties in the
data or that the ties should be resolved using appropriate methods.



Outliers: Although Spearman's rank correlation coefficient is less sensitive to outliers compared to Pearson's
correlation coefficient, outliers can still influence the results. Therefore, it is important to check for outliers before
using Spearman's rank correlation coefficient.

It is important to note that Spearman's rank correlation coefficient does not measure causality, and a significant
correlation does not necessarily mean that there is a causal relationship between the two variables. Therefore, it is
important to use caution when interpreting the results of Spearman's rank correlation coefficient.

Regression analysis

Regression analysis is a statistical method used to examine the relationship between a dependent variable and one
or more independent variables. The goal of regression analysis is to develop a model that can accurately predict the
values of the dependent variable based on the values of the independent variables.

There are two main types of regression analysis: simple linear regression and multiple linear regression:

Simple linear regression involves one independent variable and one dependent variable. The goal is to determine the
linear relationship between the two variables and develop a linear equation that can be used to predict the value of
the dependent variable based on the value of the independent variable.

Multiple linear regression involves two or more independent variables and one dependent variable. The goal is to
determine the linear relationship between the dependent variable and all the independent variables together, and
develop a linear equation that can be used to predict the value of the dependent variable based on the values of the
independent variables.

Regression analysis uses statistical measures such as the coefficient of determination (R-squared), which indicates
the proportion of variation in the dependent variable that can be explained by the independent variables, and the
coefficients of the independent variables, which indicate the magnitude and direction of the effect of each
independent variable on the dependent variable.

Regression analysis can be used in many different fields, including economics, finance, social sciences, engineering,
and biology, to name a few. It is a powerful tool for making predictions and understanding the relationships between
variables.

Fitting a regression line involves finding the equation of a line that best fits the data points in a scatter plot. The
regression line represents the linear relationship between the independent variable and the dependent variable. The
line can then be used to make predictions about the value of the dependent variable for a given value of the
independent variable.

The equation of a regression line can be written as:

Y=a+bX



Where Y is the dependent variable, X is the independent variable, a is the intercept, and b is the slope of the line.
The slope of the line (b) represents the change in Y for every unit change in X, while the intercept (a) represents the
value of Y when X is equal to zero.

To fit a regression line, various methods can be used, including the method of least squares. The method of least
squares involves minimizing the sum of the squared differences between the actual values of the dependent variable
and the predicted values of the dependent variable from the regression line.

Interpreting the results of a regression analysis involves several steps. First, the coefficient of determination (R-
squared) should be calculated, which is a measure of how well the regression line fits the data. R-squared ranges
from 0 to 1, with values closer to 1 indicating a better fit.

Second, the coefficients of the regression line should be examined. The slope coefficient (b) indicates the direction
and strength of the relationship between the independent variable and the dependent variable. A positive slope
coefficient indicates a positive relationship, while a negative slope coefficient indicates a negative relationship. The
intercept coefficient (a) represents the value of the dependent variable when the independent variable is equal to
zero.

Third, the significance of the coefficients should be evaluated using hypothesis testing. The null hypothesis is that
the coefficient is equal to zero, indicating no relationship between the independent variable and the dependent
variable. If the p-value associated with the coefficient is less than the level of significance (usually 0.05), the null
hypothesis can be rejected, and it can be concluded that the coefficient is significantly different from zero.

Finally, the regression line can be used to make predictions about the value of the dependent variable for a given
value of the independent variable. The predicted value of the dependent variable can be calculated by plugging the
value of the independent variable into the regression equation.

Simple linear regression:

Simple linear regression is a type of regression analysis that involves only one independent variable and one
dependent variable. The goal of simple linear regression is to establish a linear relationship between the two
variables and develop a linear equation that can be used to predict the value of the dependent variable based on the
value of the independent variable.

The equation of a simple linear regression line can be written as:
Y=a+bX

Where Y is the dependent variable, X is the independent variable, a is the intercept, and b is the slope of the line.
The slope of the line (b) represents the change in Y for every unit change in X, while the intercept (a) represents the
value of Y when X is equal to zero.

To fit a simple linear regression line, the method of least squares is commonly used. The method of least squares
involves minimizing the sum of the squared differences between the actual values of the dependent variable and the
predicted values of the dependent variable from the regression line.

The coefficient of determination (R-squared) is a measure of how well the regression line fits the data. R-squared
ranges from 0 to 1, with values closer to 1 indicating a better fit. R-squared represents the proportion of the total
variation in the dependent variable that is explained by the independent variable.



The slope coefficient (b) indicates the direction and strength of the relationship between the independent variable
and the dependent variable. A positive slope coefficient indicates a positive relationship, while a negative slope
coefficient indicates a negative relationship. The intercept coefficient (a) represents the value of the dependent
variable when the independent variable is equal to zero.

The significance of the coefficients can be evaluated using hypothesis testing. The null hypothesis is that the
coefficient is equal to zero, indicating no relationship between the independent variable and the dependent variable.
If the p-value associated with the coefficient is less than the level of significance (usually 0.05), the null hypothesis
can be rejected, and it can be concluded that the coefficient is significantly different from zero.

The regression line can be used to make predictions about the value of the dependent variable for a given value of
the independent variable. The predicted value of the dependent variable can be calculated by plugging the value of
the independent variable into the regression equation. However, it is important to note that predictions made
outside the range of the independent variable used to fit the regression line may not be accurate.

Multiple linear regression

Multiple linear regression is a type of regression analysis that involves more than one independent variable and one
dependent variable. The goal of multiple linear regression is to establish a linear relationship between the
dependent variable and multiple independent variables and develop a linear equation that can be used to predict
the value of the dependent variable based on the values of the independent variables.

The equation of a multiple linear regression line can be written as:

Y=a+blX1+b2X2+...+bnxn

Where Y is the dependent variable, X1, X2, ..., Xn are the independent variables, a is the intercept, and b1, b2, ..., bn
are the coefficients of the independent variables. The coefficients represent the change in Y for every unit change in
the respective independent variable, holding all other independent variables constant.

To fit a multiple linear regression line, the method of least squares is commonly used. The method of least squares
involves minimizing the sum of the squared differences between the actual values of the dependent variable and the
predicted values of the dependent variable from the regression line.

The coefficient of determination (R-squared) is a measure of how well the regression line fits the data. R-squared
ranges from 0 to 1, with values closer to 1 indicating a better fit. R-squared represents the proportion of the total
variation in the dependent variable that is explained by the independent variables.

The significance of the coefficients can be evaluated using hypothesis testing. The null hypothesis is that the
coefficient is equal to zero, indicating no relationship between the independent variable and the dependent variable,
holding all other independent variables constant. If the p-value associated with the coefficient is less than the level
of significance (usually 0.05), the null hypothesis can be rejected, and it can be concluded that the coefficient is
significantly different from zero.



Note: The regression line can be used to make predictions about the value of the dependent variable for a given set
of values of the independent variables. The predicted value of the dependent variable can be calculated by plugging
the values of the independent variables into the regression equation. However, it is important to note that
predictions made outside the range of the independent variables used to fit the regression line may not be accurate.
Additionally, it is important to ensure that the independent variables are not highly correlated with each other, as
this can lead to issues with multicollinearity.

Properties of Regression Coefficients

Regression coefficients have several properties that are important to understand when interpreting the results of a
regression analysis. Some of the key properties are:

Sign: The sign of the coefficient indicates the direction of the relationship between the independent variable and the
dependent variable. A positive coefficient indicates a positive relationship, while a negative coefficient indicates a
negative relationship.

Magnitude: The magnitude of the coefficient indicates the strength of the relationship between the independent
variable and the dependent variable. A larger coefficient indicates a stronger relationship, while a smaller coefficient
indicates a weaker relationship.

Standard error: The standard error of the coefficient measures the precision of the estimate. A smaller standard
error indicates a more precise estimate, while a larger standard error indicates a less precise estimate.

Confidence interval: The confidence interval provides a range of values within which the true value of the coefficient
is likely to fall with a certain level of confidence (usually 95%). A narrower confidence interval indicates a more
precise estimate, while a wider confidence interval indicates a less precise estimate.

T-statistic: The t-statistic is a measure of the significance of the coefficient. A larger absolute value of the t-statistic
indicates a more significant coefficient, while a smaller absolute value of the t-statistic indicates a less significant
coefficient.

P-value: The p-value indicates the probability of observing a coefficient as extreme as the one calculated, assuming
the null hypothesis that the true value of the coefficient is zero. A smaller p-value indicates a more significant
coefficient, while a larger p-value indicates a less significant coefficient.

Multicollinearity: The presence of multicollinearity (high correlation between independent variables) can lead to
unstable and unreliable coefficient estimates. In such cases, it may be necessary to use alternative methods such as
regularization or dimensionality reduction.

Itis important to consider these properties when interpreting regression coefficients, as they can provide valuable
insights into the strength, precision, and significance of the relationship between the independent variable and the
dependent variable.

Relationship between Regression and Correlation:

e Regression analysis is used to predict the value of the dependent variable based on the values of one or
more independent variables.

e Correlation analysis is used to determine the degree of association or relationship between two or more
variables.

e The coefficient of correlation (r) is often used to assess the strength and direction of the linear relationship
between the independent and dependent variables in a regression analysis.

e The coefficient of correlation (r) ranges from -1 to 1, with values closer to -1 indicating a strong negative
linear relationship, values closer to 1 indicating a strong positive linear relationship, and values close to 0
indicating little or no linear relationship.

e Regression and correlation are complementary statistical techniques that can be used together to examine
the relationship between variables.



Difference between Regression and Correlation:

Regression and correlation are two statistical techniques that are often used together to examine the relationship
between variables. Here are the key differences between regression and correlation:

Purpose: The purpose of regression analysis is to develop a mathematical equation that can be used to predict the
value of the dependent variable based on the values of one or more independent variables. In contrast, the purpose
of correlation analysis is to determine the degree of association or relationship between two or more variables.

Directionality: Regression analysis involves the dependent variable and one or more independent variables, and it
attempts to identify a functional relationship between them. Correlation analysis examines the association between
two or more variables without specifying the direction of the relationship.

Causality: Regression analysis can be used to determine the cause-and-effect relationship between the dependent
and independent variables. Correlation analysis, however, cannot determine causality; it only indicates whether a
relationship exists between two variables.

Values: The output of regression analysis is a set of regression coefficients that represent the relationship between
the dependent and independent variables. The output of correlation analysis is the correlation coefficient (r), which
represents the strength and direction of the association between two variables.

Linearity: Regression analysis assumes that the relationship between the dependent and independent variables is
linear. Correlation analysis does not make this assumption and can detect both linear and non-linear relationships.

Overall, regression analysis is used to predict the value of the dependent variable based on the values of one or
more independent variables, while correlation analysis is used to determine the degree of association or relationship
between two or more variables.

Feature Regression Analysis Correlation Analysis

Purpose Predict the value of dependent variable(s) Determine the degree of association
Directionality Dependent and independent variables Two or more variables

Causality Can determine cause-and-effect Cannot determine causality

Values Regression coefficients Correlation coefficient (r)

Linearity Assumption Assumes linear relationship Can detect both linear and non-
linear relationships




Time Series Analysis: Concept, Additive and Multiplicative models

Time series analysis is a statistical method used to analyze and forecast data that is collected over time. It is a useful
tool for understanding the behaviour of a variable over time and for making predictions about the future values of
the variable.

In time series analysis, two commonly used models are additive and multiplicative models. These models are used to
describe the relationship between the observed data and time.

Component of Time Series

The components of a time series are the different sources of variation or patterns that are present in the data over
time. These components can help to explain the underlying structure of the time series and can be used to develop
models for forecasting future values.

There are generally four main components of a time series:

Trend: The trend component represents the long-term behaviour or direction of the time series. It reflects the
underlying pattern or tendency of the series to increase or decrease over time. The trend can be linear, non-linear,
or even irregular, depending on the nature of the data.

Seasonality: The seasonality component refers to the regular and repeating patterns of variation that occur at fixed
intervals of time within a year or over multiple years. These patterns can be daily, weekly, monthly, quarterly, or
annually. Examples of seasonality include increased sales during holiday seasons, higher temperatures in summer,
and lower temperatures in winter.

Cyclical Variation: The cyclical component of the time series refers to the patterns of variation that occur over a
period of several years or even decades. These patterns are typically driven by economic, political, or social factors
that affect the overall level of the series. Cyclical variation is often confused with seasonal variation but is
fundamentally different since it does not occur at regular intervals of time.

Irregular Variation: The irregular component, also known as the residual component, refers to the random or
unpredictable fluctuations that are left after the trend, seasonality, and cyclical components have been accounted
for. These fluctuations can arise due to factors such as measurement error, sampling error, or other random events
that affect the series.

By understanding and modelling the different components of a time series, analysts can develop effective
forecasting models that take into account the underlying structure of the data.

Additive and Multiplicative Models:

An additive model assumes that the observed data is the sum of several components, each of which varies
independently over time. These components include a trend component, a seasonal component, and a random or
noise component. The trend component represents the long-term behaviour of the series, while the seasonal
component captures the periodic fluctuations in the series. The random or noise component represents the random
fluctuations in the data that are not accounted for by the trend or seasonal components. Mathematically, an
additive model can be expressed as:

Y=T+S+C+]|

where Y is the observed data at time t, T is the trend component at a time, S is the seasonal component at a time,
and | is the random or noise component at time t.

A multiplicative model, on the other hand, assumes that the observed data is the product of several components, it
also assumes that the effect of one component is proportional to the others. These components include a trend



component, a seasonal component, and a random or noise component. Mathematically, a multiplicative model can
be expressed as:

Y=T*S*C*|

where Y is the observed data at time t, T is the trend component at a time, S is the seasonal component at a time,
and | is the random or noise component at time t.

The choice of whether to use an additive or multiplicative model depends on the nature of the time series data. If
the variation in the data is proportional to the level of the data, then a multiplicative model is appropriate. If the
variation in the data is independent of the level of the data, then an additive model is appropriate.

Both additive and multiplicative models can be used for forecasting future values of the time series. The choice of
model depends on the specific characteristics of the time series data and the goals of the analysis.

Trend Analysis

Trend analysis is a method used to analyze and forecast trends in time series data. One common approach to trend
analysis is the least squares method, which involves fitting a line (or curve) to the data that minimizes the sum of the
squared differences between the predicted values and the observed values.

The Least Squares method is a statistical technique used to find the best-fit line or curve that represents the
relationship between two variables. It is commonly used in linear regression analysis, but can also be used for non-
linear regression analysis.

In simple linear regression analysis, we are interested in finding the line that best represents the relationship
between a dependent variable (Y) and an independent variable (X). The line is determined by finding the values of
the slope (b) and the intercept (a) that minimize the sum of the squared differences between the predicted values of
Y and the actual values of Y.

The equation for the line is given by:

Y=a+bX

where Y is the dependent variable, X is the independent variable, a is the intercept, and b is the slope.

To find the values of a and b that minimize the sum of the squared differences, we can use the following formulas:
b = (nZXY - 3X3Y) / (nN3X"2 - (3X)"2)

a=(2Y-b3X)/n

where n is the number of observations, SXY is the sum of the products of Xand Y, 3X and Y are the sums of Xand Y,
respectively, and YX”2 is the sum of the squares of X.

Once we have determined the values of a and b, we can use the equation of the line to predict future values of Y.

In non-linear regression analysis, the least squares method can be used to find the best-fit curve that represents the
relationship between the variables. The curve can take many different forms, depending on the specific pattern
observed in the data. The values of the parameters in the equation of the curve are determined by minimizing the
sum of the squared differences between the predicted values of Y and the actual values of Y.

Overall, the least squares method is a powerful tool for analyzing relationships between variables and making
predictions based on those relationships. However, it is important to be aware of the assumptions underlying the
method and to interpret the results carefully.



Assumptions of Least Squares Method

The least squares model relies on several assumptions in order to produce accurate results. These assumptions
include:

Linearity: The relationship between the dependent variable and the independent variable(s) should be linear. This
means that the change in the dependent variable should be proportional to the change in the independent
variable(s).

Independence: The observations should be independent of each other. This means that the value of one observation
should not be influenced by the value of any other observation.

Homoscedasticity: The variance of the errors (i.e., the difference between the predicted values and the actual
values) should be constant across all levels of the independent variable(s). This means that the spread of the errors
should be the same for all values of the independent variable(s).

Normality: The errors should be normally distributed. This means that the distribution of the errors should be
symmetrical around zero.

Outliers: The data should not contain any outliers that have a significant impact on the results. Outliers are
observations that are significantly different from the other observations and can have a large influence on the
estimated coefficients.

It is important to check these assumptions before using the least squares model to make predictions. Violations of
these assumptions can lead to inaccurate results and biased predictions. If any of these assumptions are violated, it
may be necessary to use a different modelling approach or to transform the data in order to meet the assumptions.

Applications in business decision-making:

The least squares method is widely used in business decision-making because it can be applied to a variety of
scenarios where there is a need to analyze the relationship between variables and make predictions based on that
relationship. Some of the applications of the least squares method in business decision-making include:

Forecasting: The least squares method can be used to forecast future values of a variable based on historical data.
This is useful in scenarios where there is a need to predict sales, demand, or other key performance indicators.

Pricing: The least squares method can be used to analyze the relationship between pricing and sales. This can help
businesses to determine the optimal price point that maximizes revenue and profitability.

Quality control: The least squares method can be used to analyze the relationship between quality control measures
and defects. This can help businesses to identify the key factors that contribute to defects and to develop strategies
to improve quality control.

Marketing: The least squares method can be used to analyze the relationship between marketing activities (e.g.,
advertising, promotions) and sales. This can help businesses to optimize their marketing spend and to develop more
effective marketing campaigns.

Financial analysis: The least squares method can be used to analyze the relationship between financial variables
(e.g., revenue, expenses, profits) and to make predictions about future financial performance.

Overall, the least squares method is a powerful tool for business decision-making because it allows businesses to
analyze the relationships between variables and to make predictions based on those relationships. This can help
businesses to make more informed decisions and to optimize their operations for maximum efficiency and
profitability.

Index Number and meaning



Index numbers are a statistical measure used to track changes in the value of a variable over time or across different
groups. They are typically used to measure changes in the price level, but can also be used to measure changes in
other variables such as output, employment, and population.

An index number is a measure of the relative change in the value of a variable compared to a base period or base
year. The base period is typically set to 100 and the index number for subsequent periods is expressed as a
percentage of the base period.

For example, suppose the price of a basket of goods in the base year was $100 and in the current year it has risen to
$120. The index number for the current year would be 120, indicating a 20% increase in prices compared to the base
year.

Index numbers are useful because they allow us to compare changes in the value of a variable over time or across
different groups, even if the absolute values of the variable are not comparable. For example, the price of a basket of
goods in one country may be higher than the price of the same basket of goods in another country, but we can use
index numbers to compare changes in prices over time within each country.

Index numbers can also be used to calculate inflation rates, which is the rate at which the general price level is
increasing. Inflation is calculated by taking the percentage change in the index number for a particular period and
subtracting the percentage change in the index number for the previous period.

Overall, index numbers are a valuable tool for measuring changes in the value of a variable over time or across
different groups. They allow us to compare changes in the value of a variable, even if the absolute values are not
comparable, and can provide useful insights into economic trends and patterns.

The key features of index numbers include:

Relative measure: Index numbers are a relative measure of change, meaning that they measure the change in the
value of a variable relative to a base period or base year.

Base period or base year: Index numbers are calculated relative to a base period or base year. The base period or
base year is usually set to 100, and the index number for subsequent periods is expressed as a percentage of the
base period.

Aggregation: Index numbers can be aggregated to provide an overall measure of change. For example, the
Consumer Price Index (CPI) aggregates price changes for a basket of goods and services to provide an overall
measure of inflation.

Weighting: Index numbers can be weighted to reflect the importance of different components. For example, the CPI
assigns weights to different categories of goods and services based on their relative importance in the average
consumer's budget.

Time series analysis: Index numbers can be used to analyze changes in a variable over time. This can help to identify
trends and patterns, and to make forecasts about future values of the variable.

Cross-sectional analysis: Index numbers can be used to compare changes in a variable across different groups. For
example, the GDP deflator can be used to compare changes in the general price level across different countries.

Overall, index numbers are a useful tool for measuring changes in the value of a variable over time or across
different groups. They provide a relative measure of change, can be aggregated and weighted to reflect the
importance of different components, and can be used for time series analysis and cross-sectional analysis.

There are various types of index numbers, each designed to measure changes in different variables. Here are some
of the most common types:



Price Index Numbers: These measure changes in the price of goods and services over time. Examples include the
Consumer Price Index (CPI), Producer Price Index (PPI), and Wholesale Price Index (WPI).

Quantity Index Numbers: These measure changes in the quantity of goods and services produced over time.
Examples include the Industrial Production Index (IPI) and the Retail Sales Index (RSI).

Value Index Numbers: These measure changes in the total value of goods and services produced over time.
Examples include the Gross Domestic Product (GDP) deflator, which measures changes in the price level of all goods
and services produced in a country.

Cost of Living Index Numbers: These measure changes in the cost of living over time. Examples include the
Consumer Price Index for All Urban Consumers (CPI-U) and the Consumer Price Index for Urban Wage Earners and
Clerical Workers (CPI-W).

Stock Market Index Numbers: These measure changes in the value of stocks traded on a stock exchange. Examples
include the Dow Jones Industrial Average (DJIA) and the Standard & Poor's 500 Index (S&P 500).

Quality Index Numbers: These measure changes in the quality of goods and services over time. Examples include the
Hedonic Price Index (HPI) used to measure changes in the quality of consumer goods.

Overall, index numbers are a valuable tool for measuring changes in various variables over time. The choice of index
number depends on the variable being measured and the purpose of the analysis.

Index numbers have various uses in different fields. Some common uses of index numbers include:

Economic analysis: Index numbers are used to measure changes in economic variables over time, such as inflation,
production, and employment. They help to identify trends, patterns, and fluctuations in the economy.

Business planning: Index numbers are used in business planning to forecast future values of variables, such as sales,
costs, and profits. They can help businesses to make informed decisions about production, pricing, and investments.

Investment analysis: Index numbers are used to evaluate the performance of investments, such as stocks, bonds,
and mutual funds. They help to compare the returns on different investments over time and across different
markets.

Marketing research: Index numbers are used in marketing research to measure consumer behavior and preferences.
For example, the Consumer Confidence Index (CCl) is used to measure consumer sentiment and spending habits.

Government policy-making: Index numbers are used by governments to monitor and evaluate the effectiveness of
policies, such as fiscal and monetary policies. They help to identify the impact of policies on the economy and
society.

Overall, index numbers are a valuable tool for measuring changes in various variables over time. They provide a
relative measure of change, can be aggregated and weighted to reflect the importance of different components, and
can be used for time series analysis and cross-sectional analysis.

Price, quantity, and volume indices are constructed differently depending on the variable being measured. Here
are the basic steps for constructing each type of index:

Price Index: Price indices measure changes in the price of goods and services over time. To construct a price index,
follow these steps:

e Select a base year and a basket of goods and services that represent the typical consumption patterns of a
population.
e Collect prices for each item in the basket in the base year.



e Repeat the process for subsequent years.
e Calculate the price index for each year by dividing the total cost of the basket in that year by the total cost of
the basket in the base year, then multiplying by 100.

Quantity Index: Quantity indices measure changes in the quantity of goods and services produced over time. To
construct a quantity index, follow these steps:

e Select a base year and a set of goods and services that represent the typical production patterns of an
industry or economy.

e Collect data on the quantity of each item produced in the base year.

e Repeat the process for subsequent years.

e Calculate the quantity index for each year by dividing the total quantity of each item produced in that year
by the total quantity of each item produced in the base year, then multiplying by 100.

Volume Index: Volume indices measure changes in the value of goods and services produced over time, adjusting for
changes in price. To construct a volume index, follow these steps:

e Select a base year and a set of goods and services that represent the typical production patterns of an
industry or economy.

e (Collect data on the quantity and price of each item produced in the base year.

e Repeat the process for subsequent years.

e (Calculate the value of each item produced in each year by multiplying the quantity by the price.

e Calculate the volume index for each year by dividing the total value of all items produced in that year by the
total value of all items produced in the base year, then multiplying by 100.

Overall, constructing price, quantity, and volume indices involves collecting data on the relevant variable and
comparing it over time relative to a base year or period. The resulting index provides a useful measure of change in
the variable over time, adjusting for changes in price or quantity.

Fixed base and chain base methods are two different approaches for constructing index numbers. Here's a brief
explanation of each method:

Fixed Base Method: In the fixed base method, the index is calculated relative to a fixed base year. The prices or
guantities of the items in the basket are collected for the base year, and then the same basket of items is priced or
guantified for each year under consideration. The index is calculated by dividing the cost or quantity of the basket in
each year by the cost or quantity of the basket in the base year and multiplying by 100. For example, if the base year
is 2010 and the cost of the basket of goods in 2015 is $500 and in 2020 is $600, the index for 2015 would be
calculated as (500/1000) x 100 = 50, and the index for 2020 would be calculated as (600/1000) x 100 = 60.

Chain Base Method: In the chain base method, the index is calculated relative to the preceding year instead of a
fixed base year. This method is used to link together different base years, creating a continuous series of index
numbers that account for changes in the composition of the basket of goods and services over time. The prices or
guantities of the items in the basket are collected for the first year under consideration, and the index is calculated
relative to that year. In the second year, a new basket of goods and services is chosen, and the index is calculated
relative to the previous year's basket. This process is repeated for each subsequent year, with each year's basket
being linked to the previous year's basket. For example, if the base year is 2010 and the index for 2015 is 120 and the
index for 2020 is 150, the index for 2015 is calculated as (120/100) x 100 = 120 and the index for 2020 is calculated
as (150/120) x 100 = 125.

Overall, the choice of fixed base or chain base method depends on the nature of the data and the purpose of the
index. The fixed base method is useful when comparing changes in prices or quantities over time relative to a fixed
point, while the chain base method is useful for creating a continuous series of index numbers that reflect changes in
the composition of the basket over time.



Probability theory is a branch of mathematics that deals with the study of random events and phenomena. It
provides a framework for understanding and analysing uncertain situations, enabling us to make informed decisions
in the face of uncertainty.

The basic concepts of probability theory include events, outcomes, sample space, probability, and random variables.
An event is a set of outcomes of an experiment, while an outcome is a possible result of the experiment. The sample
space is the set of all possible outcomes of the experiment, and the probability is a measure of the likelihood of an
event occurring.

Random variables are used to model uncertain quantities in probability theory. They are variables whose values
depend on the outcome of a random experiment. For example, the number of heads obtained when flipping a coin is
a random variable.

The three main types of probability are classical probability, empirical probability, and subjective probability.
Classical probability is used when all outcomes of an experiment are equally likely, and empirical probability is based
on observations and experiments. Subjective probability is based on personal judgments and opinions.

Probability theory has many applications, including in statistics, finance, engineering, and computer science. It is
used to model and analyze various real-world phenomena, such as the behavior of stock prices, the reliability of
machines, and the spread of infectious diseases.

The theory of probability is based on a set of fundamental concepts and principles, including:
e Sample space: The set of all possible outcomes of a random experiment.
e Event: A subset of the sample space representing a particular outcome or set of outcomes.

e Probability measure: A function that assigns a numerical value between 0 and 1 to each event, representing
the likelihood of that event occurring.

e Probability distribution: A function that describes the probabilities of all possible outcomes in a random
experiment.

¢ Independence: Two events are independent if the occurrence of one event does not affect the likelihood of
the other event occurring.

e Conditional probability: The probability of an event given that another event has occurred.

e Bayes' theorem: A formula for calculating the probability of an event based on prior knowledge or
information.

The theory of probability has numerous applications in various fields, including statistics, finance, engineering,
physics, and computer science. It is used to model and analyse a wide range of phenomena, such as the behaviour of
stock prices, the likelihood of natural disasters, and the spread of infectious diseases.



Hypothesis testing is a statistical method that allows researchers to make conclusions about population parameters
based on data collected from a sample. The purpose of hypothesis testing is to determine whether an assumption
about a population parameter is likely to be true or false based on the sample data. In this section, we will discuss the
different components of hypothesis testing in detail.

Hypothesis testing is a statistical method used to determine whether a particular hypothesis about a population
parameter is likely to be true or false. It involves making an assumption about a population parameter, collecting data,
and then using statistical tests to determine whether the data support or refute the hypothesis.

Steps in Hypothesis Testing:
Null Hypothesis and Alternative Hypothesis

The first step in hypothesis testing is to state the null hypothesis (HO) and the alternative hypothesis (Ha). The null
hypothesis is the assumption that there is no significant difference between a population parameter and a specific
value, whereas the alternative hypothesis is the assumption that there is a significant difference between a population
parameter and a specific value.

For example, let's say we are interested in determining whether the mean height of a population of people is different
from a specific value, such as 170 cm. The null hypothesis in this case would be that the mean height of the population
is equal to 170 cm (HO: pu = 170), and the alternative hypothesis would be that the mean height of the population is
not equal to 170 cm (Ha: p # 170).

Significance Level

The next step is to set the significance level (alpha), which is the probability of rejecting the null hypothesis when it is
true. The significance level is typically set at 0.05 or 0.01, which means that there is a 5% or 1% chance of rejecting the
null hypothesis when it is true.

Type | and Type Il Errors

Before we move on to the next steps, it's essential to understand the concept of Type | and Type Il errors. Type | error
occurs when we reject the null hypothesis when it is true, whereas Type Il error occurs when we accept the null
hypothesis when it is false. The probability of Type | error is denoted by alpha, whereas the probability of Type Il error
is denoted by beta.

Test Statistics

The next step in hypothesis testing is to calculate the test statistic, which is a measure of how far the sample estimate
is from the hypothesized value. The test statistic depends on the type of hypothesis test being conducted. For example,
if we are conducting a t-test, the test statistic would be calculated using the t-distribution.

P-Value

The p-value is the probability of obtaining a sample result as extreme or more extreme than the one observed if the
null hypothesis is true. It measures the strength of evidence against the null hypothesis. The p-value is compared to
the significance level (alpha) to determine whether to reject or fail to reject the null hypothesis.

If the p-value is less than alpha, we reject the null hypothesis and conclude that the alternative hypothesis is true. If
the p-value is greater than alpha, we fail to reject the null hypothesis.

Confidence Intervals



Another way of testing hypotheses is to use confidence intervals. A confidence interval is a range of values that is likely
to contain the true population parameter with a certain degree of confidence. The degree of confidence is typically
set at 95% or 99%. If the hypothesized value falls outside the confidence interval, we reject the null hypothesis.

Conclusion

In conclusion, hypothesis testing is a statistical method used to test whether a hypothesis about a population
parameter is likely to be true or false based on the sample data. The process involves stating the null hypothesis and
the alternative hypothesis, setting the significance level, calculating the test statistic, determining the p-value, and
drawing a conclusion. The choice of the hypothesis test and the method used to interpret the results depend on the
nature of the data and the research question being investigated.

Null Hypothesis

In statistical hypothesis testing, the null hypothesis (HO) is a hypothesis that represents the status quo or the current
state of knowledge. It is often a statement that there is no significant difference between a population parameter and
a specific value or that there is no relationship between two variables.

For example, if we are interested in testing whether a new medication is effective in reducing blood pressure, the null
hypothesis would be that the new medication is not effective, and there is no significant difference in blood pressure
between the group that received the medication and the group that did not receive it.

The null hypothesis is tested against an alternative hypothesis (Ha), which is a hypothesis that represents the opposite
of the null hypothesis. In the example above, the alternative hypothesis would be that the new medication is effective,
and there is a significant difference in blood pressure between the two groups.

The purpose of testing the null hypothesis is to determine whether there is enough evidence to reject it in favor of the
alternative hypothesis. If the data collected provides enough evidence to reject the null hypothesis, then the
alternative hypothesis is accepted. If the data does not provide enough evidence to reject the null hypothesis, then it
is accepted.

Itis important to note that failing to reject the null hypothesis does not mean that the null hypothesis is true. It simply
means that there is not enough evidence to reject it. Therefore, the null hypothesis is always considered the default
assumption until evidence to the contrary is presented.

Alternative hypothesis

In statistical hypothesis testing, the alternative hypothesis (Ha) is a hypothesis that represents the opposite of the null
hypothesis (HO). It is often a statement that there is a significant difference between a population parameter and a
specific value or that there is a relationship between two variables.

For example, if we are interested in testing whether a new medication is effective in reducing blood pressure, the
alternative hypothesis would be that the new medication is effective, and there is a significant difference in blood
pressure between the group that received the medication and the group that did not receive it. This is the opposite of
the null hypothesis, which states that the new medication is not effective and there is no significant difference in blood
pressure between the two groups.

The purpose of testing the alternative hypothesis is to determine whether there is enough evidence to reject the null
hypothesis in favor of the alternative hypothesis. If the data collected provides enough evidence to reject the null
hypothesis, then the alternative hypothesis is accepted. If the data does not provide enough evidence to reject the
null hypothesis, then it is accepted.

Itis important to note that the alternative hypothesis is often more specific than the null hypothesis. For example, the
alternative hypothesis may state that the population parameter is greater than or less than a specific value, whereas



the null hypothesis may only state that the population parameter is equal to a specific value. This specificity helps to
guide the statistical test and provides more precise conclusions.

In summary, the alternative hypothesis represents the hypothesis that is being tested against the null hypothesis in
statistical hypothesis testing. It is often a statement that there is a significant difference or relationship between two
variables, and the purpose of testing it is to determine whether there is enough evidence to reject the null hypothesis.

Types of Error in Hypothesis:

In statistical hypothesis testing, there are two types of errors that can occur: Type | error and Type Il error.

Type | error occurs when the null hypothesis (HO) is rejected when it is actually true. This means that the statistical
test concludes that there is a significant difference or relationship between two variables when there is not. Type |
error is also known as a false positive.

For example, if a researcher concludes that a new medication is effective in reducing blood pressure (rejects the null
hypothesis) when in fact it is not effective (null hypothesis is true), then this would be a Type | error.

The probability of making a Type | error is denoted by the Greek letter alpha (a) and is usually set at 0.05 or 0.01,
which represents the level of significance of the statistical test.

Type Il error occurs when the null hypothesis (HO) is not rejected when it is actually false. This means that the statistical
test concludes that there is no significant difference or relationship between two variables when there is. Type Il error
is also known as a false negative.

For example, if a researcher concludes that a new medication is not effective in reducing blood pressure (fails to reject
the null hypothesis) when in fact it is effective (alternative hypothesis is true), then this would be a Type Il error.

The probability of making a Type Il error is denoted by the Greek letter beta (B) and depends on various factors,
including the sample size, the effect size, and the level of significance of the test.

In statistical hypothesis testing, it is important to minimize both Type | and Type Il errors, but it is not always possible
to do so simultaneously. The balance between these two types of errors is often a trade-off, and researchers must
carefully consider the costs and consequences of each type of error when interpreting the results of a statistical test.

Testing of Hypothesis:

1. Small-Scale Test
2. Llarge-Scale Test

Small sample tests are statistical tests that are used when the sample size is small (typically less than 30) and the
population standard deviation is unknown. These tests rely on the t-distribution, which is a distribution that takes into
account the added uncertainty due to the small sample size.

Some of the common small sample tests include:

t-test: A t-test is a statistical test used to test a hypothesis about a population mean when the population standard
deviation is unknown. It is used when the sample size is small (typically less than 30) and the population standard
deviation is unknown.



Paired t-test: A paired t-test is a statistical test used to test the difference between two means when the two samples
are paired. It is used when the sample size is small (typically less than 30) and the population standard deviation is
unknown.

Small sample tests are typically less powerful than large sample tests because of the added uncertainty due to the
small sample size. However, they are appropriate when the sample size is small, and the population standard deviation
is unknown. It is important to choose the appropriate test based on the research question and the type of data being
analysed to ensure accurate and reliable results.

Large sample tests are statistical tests that are used when the sample size is sufficiently large (typically more than 30)
and the population standard deviation is known or estimated. These tests rely on the central limit theorem, which
states that the distribution of the sample mean approaches a normal distribution as the sample size increases.

Some of the common large sample tests include:

Z-test: A Z-test is a statistical test used to test a hypothesis about a population mean when the population standard
deviation is known. It is used when the sample size is large (typically more than 30) and the population standard
deviation is known or can be estimated from a previous study.

Chi-square test: A chi-square test is a statistical test used to test the independence between two categorical variables.
It is used when the sample size is large, and the expected cell frequency is at least 5.

F-test: An F-test is a statistical test used to test the equality of variances between two or more groups. It is used when
the sample size is large, and the population standard deviation is known or can be estimated from a previous study.

One-sample z-test: A one-sample z-test is a statistical test used to test a hypothesis about a population mean when
the population standard deviation is known. It is used when the sample size is large (typically more than 30) and the
population standard deviation is known or can be estimated from a previous study.

Large sample tests are typically more powerful than small sample tests because they are less affected by sampling
variability. However, they also require larger sample sizes to be reliable, and they may not be appropriate when the
population standard deviation is unknown or when the distribution of the data is highly skewed.

t-test, F-test, Z-test, and Chi-square test are commonly used statistical tests in hypothesis testing. Here's an
overview of each test:

t-test: A t-test is a statistical test used to compare the means of two groups. It is used when the sample size is small
(less than 30) or the population standard deviation is unknown. The t-test calculates a t-value, which is used to
determine whether the difference between the means is statistically significant.

F-test: An F-test is a statistical test used to compare the variances of two or more groups. It is used when the sample
size is large (greater than 30) and the population standard deviation is known. The F-test calculates an F-value, which
is used to determine whether the variances are statistically significant.

Z-test: A Z-test is a statistical test used to compare a sample mean to a known population mean. It is used when the
sample size is large (greater than 30) and the population standard deviation is known. The Z-test calculates a Z-score,
which is used to determine whether the difference between the sample mean and population mean is statistically
significant.

Chi-square test: A chi-square test is a statistical test used to determine whether there is a significant association
between two categorical variables. Itis used when the data are categorical, and the sample size is large. The chi-square
test calculates a chi-square statistic, which is used to determine whether the association between the two variables is
statistically significant.



Each of these tests has different assumptions and requirements, and the choice of test depends on the research
guestion and the type of data being analyzed. It is important to choose the appropriate test to ensure accurate and
reliable results.

Business Analytics:

Business analytics is the process of using data analysis techniques and statistical methods to extract insights from
business data and use them to make informed decisions. It involves gathering and analyzing data from a variety of
sources, including financial data, customer data, market trends, and operational data.

The concept of business analytics is to help organizations make better decisions by providing them with a deeper
understanding of their business operations and performance. It helps organizations identify trends, patterns, and
relationships in their data, which can be used to develop strategies, improve operations, and optimize decision-
making.

Business analytics can be applied to a variety of business functions, including marketing, sales, operations, finance,
and human resources. It involves using various analytical tools such as predictive modelling, data visualization, data
mining, and machine learning to analyze data and generate insights.

The process of business analytics involves several stages, including data collection, data preparation, data analysis,
and data visualization. In the data collection stage, relevant data is collected from various sources and stored in a
centralized database. In the data preparation stage, the data is cleaned, transformed, and organized in a way that is
suitable for analysis. In the data analysis stage, various statistical methods and analytical tools are used to analyze the
data and identify patterns and trends. Finally, in the data visualization stage, the insights generated from the data
analysis are presented in a visually appealing format, such as charts, graphs, and dashboards.

Overall, the concept of business analytics is to help organizations make data-driven decisions that lead to better
business outcomes. By analyzing data and generating insights, businesses can identify areas for improvement, make
better decisions, and gain a competitive advantage in the market.

Application of Business Analytics:

Business analytics has many applications across different industries and business functions. Some of the common
applications of business analytics include:

Marketing: Business analytics can be used to analyze customer behavior, identify buying patterns, and develop
targeted marketing campaigns. By understanding customer preferences and behavior, businesses can create
personalized marketing strategies and improve customer engagement.

Sales: Business analytics can be used to analyze sales data, identify trends, and forecast future sales. By understanding
customer behavior and market trends, businesses can optimize sales strategies and improve revenue.

Operations: Business analytics can be used to optimize supply chain management, production planning, and inventory
management. By analyzing operational data, businesses can identify inefficiencies and improve processes to reduce
costs and improve productivity.

Finance: Business analytics can be used to analyze financial data, identify trends, and forecast future performance. By
understanding financial trends and patterns, businesses can make informed decisions about investments, budgeting,
and risk management.

Human resources: Business analytics can be used to analyze workforce data, identify talent gaps, and optimize hiring
and retention strategies. By understanding employee behavior and preferences, businesses can create a more
engaged and productive workforce.



Risk management: Business analytics can be used to analyze data related to risks, such as fraud, cybersecurity, and
compliance. By identifying potential risks and developing mitigation strategies, businesses can protect themselves
from potential losses and reputational damage.

Overall, the application of business analytics can help businesses improve decision-making, optimize processes, and
gain a competitive advantage in the market. By analyzing data and generating insights, businesses can create more
efficient and effective operations, improve customer satisfaction, and increase profitability.

Descriptive analytics

Descriptive analytics is a branch of business analytics that involves analyzing historical data to understand patterns,
trends, and insights. It helps to summarize and describe the characteristics of a particular dataset or population,
providing information about what has happened in the past.

Descriptive analytics includes a variety of statistical methods and techniques, such as mean, median, mode, standard
deviation, and correlation analysis. These methods are used to describe and summarize the characteristics of a dataset,
such as the average value, the spread of the data, and the relationship between different variables.

Some common applications of descriptive analytics include:

Business performance analysis: Descriptive analytics can be used to analyze historical financial data and identify
trends in revenue, costs, and profits. It can help businesses understand their performance over time and make
informed decisions about future investments.

Customer behavior analysis: Descriptive analytics can be used to analyze customer data and identify patterns in their
behavior, such as purchase history, product preferences, and demographic information. It can help businesses
understand their customers and develop targeted marketing strategies.

Operations analysis: Descriptive analytics can be used to analyze operational data, such as production output,
inventory levels, and quality control data. It can help businesses identify inefficiencies and areas for improvement in
their operations.

Risk analysis: Descriptive analytics can be used to analyze historical data related to risks, such as fraud, cyber attacks,
and natural disasters. It can help businesses understand the likelihood and impact of these risks and develop mitigation
strategies.

Overall, descriptive analytics provides a valuable foundation for other branches of business analytics, such as
predictive and prescriptive analytics. By understanding patterns and trends in historical data, businesses can make
more informed decisions and improve their performance over time.

Predictive analytics

Predictive analytics is a branch of business analytics that uses statistical modelling and machine learning techniques
to analyze data and make predictions about future outcomes. It involves using historical data to identify patterns and
trends, and then using these insights to make predictions about what is likely to happen in the future.



Predictive analytics involves a range of techniques, such as regression analysis, decision trees, and neural networks.
These techniques are used to build predictive models that can be used to forecast future events, identify trends, and
make recommendations.

Some common applications of predictive analytics include:

Sales forecasting: Predictive analytics can be used to analyse sales data and identify trends in customer behavior, such
as changes in buying patterns or preferences. This information can be used to forecast future sales and optimize sales
strategies.

Customer churn prediction: Predictive analytics can be used to analyse customer data and identify factors that are
likely to lead to customer churn, such as low engagement or dissatisfaction. This information can be used to develop
retention strategies and improve customer loyalty.

Fraud detection: Predictive analytics can be used to analyse transactional data and identify patterns of fraudulent
activity. This information can be used to detect and prevent fraud in real-time.

Supply chain optimization: Predictive analytics can be used to analyse supply chain data and identify potential
bottlenecks or inefficiencies. This information can be used to optimize production and logistics processes.

Risk management: Predictive analytics can be used to analyse data related to risks, such as credit risk or cybersecurity
risk. This information can be used to identify potential risks and develop mitigation strategies.

Overall, predictive analytics provides businesses with the ability to make more informed decisions based on insights
about future events. By identifying patterns and trends in historical data, businesses can forecast future outcomes,
make better predictions, and optimize their operations to achieve better results.



Statistics Cheat Sheet

Population
The entire group one desires information about

Sample

A subset of the population taken because the entire population is usually too large to analyze
Its characteristics are taken to be representative of the population

Mean
Also called the arithmetic mean or average
The sum of all the values in the sample divided by the number of values in the sample/population
u is the mean of the population; X is the mean of the sample

Median
The value separating the higher half of a sample/population from the lower half

Found by arranging all the values from lowest to highest and taking the middle one (or the mean of the middle two if there
are an even number of values)

Variance
Measures dispersion around the mean
Determined by averaging the squared differences of all the values from the mean
Variance of a population is o2 Can be calculated by subtracting the square of the mean from the
average of the squared scores:

(x—w)’ x?
()'2 = E— 0_2 — E _ MZ
n n
Variance of a sample is 52; note the n-1 Can be calculated by:
> x)?
2
—\2 e
) 2 (x—X) 2 E * n
S == S =
n-1 n-1

Standard Deviation
Square root of the variance
Also measures dispersion around the mean but in the same units as the values (instead of square units with variance)
o is the standard deviation of the population and S is the standard deviation of the sample

Standard Error
An estimate of the standard deviation of the sampling distribution—the set of all samples of size n that can be taken from a

population
Reflects the extent to which a statistic changes from sample to sample
N
For a mean, T For the difference between two means,
n

: . of 11 .
Assuming equal variances .|S°| — + — | ; unequal variances

n,.n,




T-test
One-Sample
Tests whether the mean of a normally distributed population is different from a specified value

Null Hypothesis (Ho): states that the population mean is equal to some value (uo)
Alternative Hypothesis (H.): states that the mean does not equal/is greater than/is less than ug
t-statistic: standardizes the difference between X and po
I )
S
\In
Read the table of t-distribution critical values for the p-value (probability that the sample mean was obtained by
chance given o is the population mean) using the calculated t-statistic and degrees of freedom.
Ha: u>uo = the t-statistic is likely positive; read table as given
Ha: u<uo = the t-statistic is likely negative; the t-distribution is symmetrical so read the probability as if the t-
statistic were positive
Note: if the t-statistic is of the ‘wrong’ sign, the p-value is 1 minus the p given in the chart
Ha: u#uo > read the p-value as if the t-statistic were positive and double it (to consider both less than and greater
than)
If the p-value is less than the predetermined value for significance (called a and is usually 0.05), reject the null
hypothesis and accept the alternative hypothesis.

t Degrees of freedom (df) = n-1

Example:

You are experiencing hair loss and skin discoloration and think it might be because of selenium toxicity. You decide to
measure the selenium levels in your tap water once a day for one week. Your results are given below. The EPA
maximum contaminant level for safe drinking water is 0.05 mg/L. Does the selenium level in your tap water exceed
the legal limit (assume 0=0.05)?

Day Selenium Ho: u=0.05; Ha: u>0.05
mg/L Calculate the mean and standard deviation of your sample:
1 0.051 x =0.0508
; 828385 o ¥ (x-x) _ (0.051-0.0508)" + (0.0505-0.0508)° + etc... _o s 107
4 0.0516 n-1 6
5 0.052 s=/s* =9.56x10™
6 0.0508
7 0.0506

X-u, 0.0508-0.05
s 9.56x10™

W

Looking at the t-distribution of critical values table, 2.17 with 6 degrees of freedom is between p=0.05 and p=0.025.
This means that the p-value is less than 0.05, so you can reject Ho and conclude that the selenium level in your tap
water exceeds the legal limit.

The t-statisticis: ¢ =

=2.17 and the degrees of freedom are n-1=7-1=6

T-test
Two-Sample
Tests whether the means of two populations are significantly different from one another
Paired
Each value of one group corresponds directly to a value in the other group; ie: before and after values after drug
treatment for each individual patient
Subtract the two values for each individual to get one set of values (the differences) and use
uo = 0 to perform a one-sample t-test
Unpaired
The two populations are independent
Ho: states that the means of the two populations are equal (ni=u2)
Ha.: states that the means of the two populations are unequal or one is greater than the other (wi#uz, wi>uz, ni<uz)



t-statistic:

assuming equal variances: f =

degrees of freedom = (n1-1)+(nz-1)

Read the table of t-distribution critical values for the p-value using the calculated t-statistic and degrees of
freedom. Remember to keep the sign of the t-statistic clear (order of subtracting the sample means) and to
double the p-value for an H, of wi#us.

Example:

Consider the lifespan of 18 rats. 12 were fed a restricted calorie diet and lived an average of 700 days (standard
deviation=21 days). The other 6 had unrestricted access to food and lived an average of 668 days (standard
deviation=30 days). Does a restricted calorie diet increase the lifespan of rats (assume a=0.05)?

M1=700, S1=2 1, I’l1=12; M2=668, Sz=30, I’l2=6

Ho: wi=p2

Ha: wi>u2 (because we are only asking if a restricted calorie diet increases lifespan)

We cannot assume that the variances of the two populations are equal because the different diets could also affect
the variability in lifespan.

The t-statistic is: = B S 700 - 668 =2.342

noon, 126

Degrees of freedom = (n1-1)+(nz-1) = (12-1)+(6-1)=16
From the t-distribution table, the p-value falls between 0.01 and 0.02, so we do reject Ho. The restricted calorie
diet does increase the lifespan of rats.

Chi-Square Test
For Goodness of Fit
Checks whether or not an observed pattern of data fits some given distribution
Ho: the observed pattern fits the given distribution
H.: the observed pattern does not fit the given distribution
)2

O-F
The chi-square statistic is: X2 = E(T (O is the observed value and E is the expected value)

Degrees of freedom = number of categories in the distribution - 1

Get the p-value from the table of 2 critical values using the calculated %2 and df values. If the p-value is less than a, the
observed data does not fit the expected distribution. If p>a, the data likely fits the expected distribution

Example 1:

You breed puffskeins and would like to determine the pattern of inheritance for coat color and purring ability.

Puffskeins come in either pink or purple and can either purr or hiss. You breed a purebred, pink purring male with a

purebred, purple hissing female. All individuals of the F1 generation are pink and purring. The F; offspring are shown

below. Do the alleles for coat color and purring ability assort independently (assume 0=0.05)?
Pink and Purring Pink and Hissing Purple and Purring Purple and Hissing
143 60 55 18

Independent assortment means a phenotypic ratio of 9:3:3:1, so:

Ho: the observed distribution of F; offspring fits a 9:3:3:1 distribution

H.: the observed distribution of F; offspring does not fit a 9:3:3:1 distribution

The expected values are:
Pink and Purring Pink and Hissing Purple and Purring Purple and Hissing
155.25 51.75 51.75 17.25




=2.519

2 E (O-E)’ _(143- 155.25)* N (60-51.75) N (55-51.75) N (18-17.25)°
E 155.25 51.75 51.75 17.25
df=4-1=3
From the table of %2 critical values, the p-value is greater than 0.25, so the alleles for coat color and purring ability do
assort independently in puffskeins.

Example 2: .
You are studying the pattern of dispersion of king penguins and the diagram on the right . <« °
represents an area you sampled. Each dot is a penguin. Do the penguins display a uniform o )
distribution (assume a=0.05)? . s .

Ho: there is a uniform distribution of penguins e
H.: there is not a uniform distribution of penguins ol
There are a total of 25 penguins, so if there is a uniform distribution, there should be 2.778
penguins per square. There actual observed values are 2, 4, 4, 3, 3, 3, 2, 3, 1, so the 2 statistic is:

v-3 © ;5 E)' _(1-2778)" 2((2 ~2.778) )+ 4((3 ~2.778) )+ 2((4 ~2.778) ) s

2.778 2.778 2.778 2.778
df=9-1=8
From the table of 2 critical values, the p-value is greater than 0.25, so we do not reject Ho. The penguins do display a
uniform distribution.

Chi-Square Test
For Independence

Checks whether two categorical variables are related or not (independence)

Ho: the two variables are independent

Ha: the two variables are not independent

Does not make any assumptions about an expected distribution

The observed values (#1, #2, #3, and #4) are usually presented as a table. Each row is a category of variable 1 and each
column is a category of variable 2.

Variable 1 Totals
Category x | Categoryy
Variable 2 Categorya | #; #, H#i+#o
Category b | #3 #y H#it+#s
Totals #i+#3 H#aot#s H#it+#o+H#3+H,

The proportion of category x of variable 1 is the number of individuals in category x divided by the total number of

individuals # +#5 . Assuming independence, the expected number of individuals that fall within category
# +#, L+,

a of variable 2 is the proportion of category x multiplied by the number of individuals in category a
#,+#, (#,+4,)" Thus, the expected value is:

#owtt i+, )
Eo (#,+#,)#, +#,) _ (row total)(column total)

# +#, grand total
Degrees of freedom = (r-1)(c-1) where r is the number of rows and c is the number of columns
The chi-square statistic is still > _ D (0-E)

E

Read the p-values from the table of %2 critical values.

Example:
Given the data below, is there a relationship between fitness level and smoking habits (assume a=0.05)?
Fitness Level

Low Medium-Low | Medium-High High
Never smoked 113 113 110 159 495
Former smokers 119 135 172 190 616
1 to 9 cigarettes daily 77 91 86 65 319
> 10 cigarettes daily 181 152 124 73 530
490 491 492 487 1960




Ho: fitness level and smoking habits are independent

H.: fitness level and smoking habits are not independent

First, we calculate the expected counts. For the first cell, the expected count is:
(row total)(column total) (495)(490)

E = =123.75
grand total 1960
Fitness Level
Low Medium-Low | Medium-High High

Never smoked 123.75 | 124 124.26 122.99

Former smokers 154 154.31 154.63 153.06

1 to 9 cigarettes daily 79.75 79.91 80.08 79.26

> 10 cigarettes daily 132.5 132.77 133.04 131.69

2 2 2 2

= E(O E) _ (113-123.75) N (113-124) N (110-124.26) +ete.. =91.73

E 123.75 124 124.26
df=(r-1)(c-1)=(4-1)(4-1)=9

From the table of %2 critical values, the p-value is less than 0.001, so we reject Hp and conclude that there is a
relationship between fitness level and smoking habits.

Type | error

The probability of rejecting a true null hypothesis
Equals a

Type Il error
The probability of failing to reject a false null hypothesis

Probability

Joint Probability
The probability of events A and B occurring
P(A and B) = P(A) x P(B) when events A and B are independent

Union of Events

The probability of either event A or event B occurring
P(AorB)=P(A)+ P(B)- P(A and B)

Conditional Probability
The probability of event A occurring given that event B has occurred

Pl By < LAand B) o A 1B~ PBIAXP(A)
P(B) P(B)
Chances of
findingan A

All possible outcomes outcomein all

the B outcomes

—t—

Example 1:

Assume that eye color is an autosomally inherited trait controlled by one gene with two alleles. Brown is dominant to

blue. A brown-eyed man with genotype Bb and a blue-eyed woman have three children. The first has blue eyes. What
is the probability that all three children have blue eyes?



Without considering the first child, the probability that the couple has three children with blue eyes is
0.5x0.5%x0.5=0.125 = P(A and B) = P(2 children = bb and 1st child bb)
With his parents, the probability that the 1st child is bb is: P(B) = P(1st child =bb) =0.5

Therefore, P(2 children = bb | st child bb) = P(A 1 )= L Aand B _0.125
P(B) 0.5

0.25

Example 2:

Based on an analysis of her pedigree, it is determined that a woman has a 70% chance of being Zz and a 30% chance of
being ZZ for a sex-linked trait, where Z is dominant to z. If she now has a son with the Z phenotype, what is the
probability of her being Zz?

We're looking for: P(W=Zz|S=Z)
But it’s hard to find P(W=Zz and S=Z) because the two events are not independent. Instead, let us use:
P(AIB) = P(B1A)x P(A)
P(B)
P(S=ZIW =Zz)=0.5(50% chance of passing on the Z allele)
P(W =Zz)=0.7 (given)
P(S=27)=(0.7x0.5)+(0.3x1)=0.65 (son can be Z from the woman being either Zz or ZZ)

POW =225 =2)= 22207 _ 53¢

Multiple Experiments

Binomial distribution
For when you are not concerned about the order of the events, only that they occur

| m _ (n-m)
P(X = m)= nlxp” x(1- p)

mlx(n—m)!
for m outcomes of event X in n total trials with p=probability of X occurring once
Example:
What is the probability that a couple has one boy out of five children?

| 1 4
P(1 boy of 5 children) = 200 X93" _ ¢ 15625

1'x(4)!
Poisson distribution

The binomial distribution works for a small number of trials but as n gets too large, the factorials become
unwieldy.

The Poisson distribution is an estimate of the binomial distribution for large n.
—np m
e X(n X
P(X oy & XX D)

m!
Note: np is also known as the number of expected outcomes for event X



TABLE B: 1-DISTRIBUTION CRITICAL VALUES

Tail probability p

daf | .25 20 A5 10 05 025 02 .01 00s 0025 .001 0005

1] 1000 1376 1963 3.078 6314 1271 1589 31.82 6366 1273 3133 6366

21 816 1061 1386 1.886 2920 4303 4849 6.965 9925 1409 2233 3160

3| 765 978 1250 1.638 21353 3,182 3482 4541 5841 7453 1021 1292

41 741 941 1190 1533 2132 2776 2999 3747 4604 © 5598 7173 8610

5| 727 920 1156 1476 2015 2571 2757 3365 4032 4773 5893  6.869

6| 718 006 1.134 1440 1.943 2447 2612 3143 3707 4317, 5208 5959

7] 711 896 1119 1415 1.895 2365 2517 2998 3499 4029 4785 5408

g 706 889 1108 1397 1.860 2306 2449 2896 3355 3833 4501 5.041

91 .703 883 1100 1383 1,833 2262 2398 2821 3250 3.690 4297 4781

10 | 700 879 1092 1372 1.812 2228 2359 2764 3169 3581 4.144 4537

11| 697 876 1088 1363 1796 2201 2328 2718 3.106 3497 4.025 4437

12| 695 873 1083 1356 1782 2179 2303 2681 3055 3428 3930 4318

13 | .694 870 1079 1350 1771 2,160 2282 . 2.650 3.012° 3372 3.852 4.221

14| 692 868 1076 1.345 L7611 2145 2264 2624 2977 3326 3787 4.140

15 | 691 866 1074 1341 1753 2131 2249 2602 2947 3286 3733 4073

16 | 690 865 1.071 1337 1746 2120 2235 2583 2921 3252- 3.686 4.015

17 | .689 863 1.069 1333 1740 2,110 2224 2567 2893 3222 3.646 3.965
18| 688  .862 1.067 1330 1734 2]01 2214 2552 2878 3197 3611 3922
19 | 688 861 1066 1328 1,729 2,093 2205 2539 2861 3174 3.579 3.883
20| .687 860 1.064 1325 1725 2086 2197 2528 2845 3.153 3.552 3.850
21| 686 859 1.063 1323 1721 2080 2189 2518 2.831. 3.135 3527 3819
22| 68 858 1061 1321 1717 2074 2183 2508 2819 3.119 3505 3.792
23| 685 858 1060 1319 1714 2069 2.177 2500 2.807 3.104 3485 3.768
24 |- 685 857 1059 1318 LTIl 2064 2172 2492 2797 3.091 3467 3.745
25| 684 856 1.058 1316 1708 2060 2167 2485 2787 3.078 3450 3.725
26| 684 856 1.058 1315 1706 2056 2162 2479 2779 3.067 3435 3707
27| 684 855 1057 1314 1703 2052 2158 2473 2771 3.057 3421 3.690
28 | 683 855 1.056 1313 1.701 2048 2154 2467 2763 3047 3408 3674
29 | .683 854 1055 L1311 1.69% 2045 2150 2462 2756 3.038 3396 3.659
0| 683 854 1.055 15310 1.697 2042 2147 2457 2750 3.030 3385 3646 .
40 | 681 851 L0S0 1303 1684 2021 2123 2423 2704 2971 3307 3551
50 | .679 849 1047 1299 1676 2009 2.105 2403 2678 2937 3261 3496
60 | 679 248  1.045 1296 1.671 2000 2.099 2390 2660 2915 3232 2460
80 | 678 846 1043 1292 1.664 1960 2.088 2374 2639 2887 2195 3416
100 | 677 845 1042 1200 1660 1984 2081 2364 2626 2.871 3.174 3390
1000 | 675 842 1,037 1282 1646 1962 2056 2330 2581 2813 3.098 3300
w | 674 841 1036 1282 1645 1960 2054 2326 2576 2.807 3.001 3291

50% 60% T0% B0% 90%  95% 96% 98% 99% 995% 998% $9.9%

Confidence level C




TABLE C: * CRITICAL VALUES

¥ CRITICAL VALUES

Tail probability p
df 25 20 5 10 .05 025 02 01 005 0025 001
1 1.32 1.64 2.07 2.71 3.84 5.02 541 663 788 5.14 10.83:
2 277, 322 3.79 4.61 5.99 7.38 7.82 921 1060 1198 13.82
3 4.11 4.64 5.32 6.25 7.81 9.35 984 1134 1284 1432 1627
4 539 5.99 6.74 7.78 949 1114 1167 1328 1486 1642 1847
S 6.63 7.29 8.12 924 1107 1283 1339 1509 1675 1839 2051
6 7.84 8.56 945 1064 1259 1445 1503 1681 1855 2025 2246
7 9.04 9.80 10.75  12.02 1407 1601 1662 1848 2028 2204 2432
8| 1022 11.03 12,03 1336 1551 17.53 1817 2009 2195 2377 26.12
9| 1139 1224 1329 1468 1692 1902 1968 21.67 2359 2546 27.88
10 | 1255 1344 1453 1599 1831 2048 2116 2321 2519 2711 2959
I1] 1370 1463 1577 1728 19.68 2192 2262 2472 2676 2873 31.26
12 | 1485 1581 1699 1855 21.03 2334 2405 2622 2830 3032 3291
12| 1598 1698 1820 1981 2236 2474 2547 2769 29.82 31.88 3453
4 | 17.12 1815 1941 2106 23.68 2612 2687 29.14 31.32 3343 3612
15| 1825 1931 2060 2231 2500 2749 2826 3058 3280 3495 37.70
16 | 1937 2047 2179 2354 2630 2885 2963 32.00 3427 3646 3925
17| 2049 2161 2298 2477 2739 3019 3100 3341 3572 3795 4079
18| 21.60 2276 2416 2599 2887 3153 3235 3481 3716 3942 4231
19| 2272 2350 2533 2720 30.14 3285 3369 3619 3858 40.88 4382
20 | 2383 2504 2650 2841 3141 3417 3502 3757 4000 4234 4531
21| 2493 2617 2766 2962 3267 3548 3634 3893 4140 4378 46.80
22| 2604 2730 2882 3081 3392 3678 3766 4029 4280 4520 4827
23| 2714 2843 2998 3201 3517 38.08 3897 4164 4418 4662 49.73
24| 2824 29535 3113 3320 3642 3936 4027 4298 4556 48.03 5118
25| 2934 3068 3228 3438 3765 4065 4157 4431, 4693 4944 5262
26 | 3043 3179 3343 3556 3889 4192 4286 4564 4829 50.83 5405
27 3153 3291 3457 3674 4011 4319 4414 4696 4964 5222 5548
28| 3262 3403 3571 3792 4134 4446 4542 4828 5099 5359 56.89
29 | 3371 3514 3685 3509 4256 4572 4669 49.59 5234 5497 5830
30 [ 34.80 3625 3799 4026 4377 4698 4796 50.89 5367 5633 59.70
40 | 4562 4727 4924 5181 5576 3934 6044 6369 6677 6970 7340
50 5633 5816 6035 €317 6750 7142 7261 7615 7949 8266 86.66
601 6698 6897 7134 7440 7908 8330 8458 8838 9195 9534 9961
80| 8813 9041 9311 9658 1019 1066 1081 1123 1163 1201 1248
100 | 109.3 117 1147 1185 1243 1296 1311 1358 1402 1443 1494




Normal Distribution
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Bernoulli Distribution

X ~ Bernoulli(p)




Binomial Distribution
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Exponential Distribution
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Log Normal Distribution
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