
3 Time Response Analysis of 
Control Systems 

3.1 Introduction 

The first st~p in the analysis of a control system is, describing the system in terms of a mathematical 
model. In chapter 2 we have seen how any given system is modelled by defining its transfer function. 
The next step would be, to obtain its response, both transient and steadystate, to a specific input. The 
input can be a time varying function which may be described by known mathematical functions or it 
may be a random signal. Moreover these input signals may not be known apriori. Thus it is customary 
to subject the control system to some standard input test signals which strain the system very severely. 
These standard input signals are : an impulse, a step, a ramp and a parabolic input. Analysis and 
design of control systems are carried out, defining certain performance measures for the system, 
using these standard test signals. 

It is also pertinent to mention that any arbitary time function can be expressed in terms of linear 
combinations of these test signals and hence, if the system is linear, the output of the system can be 
obtained easily by using supersition principle. Further, convolution integral can also be used to determine 
the response of a linear system for any given input, if the response is knownfor a step or an impulse 
input. 

3.2 Standard Test Signals 

3.2.1 Impulse Signal 

An impulse signal is shown in Fig. 3.1. 

f(t) 

(A) 

--.t 
Fig. 3.1 An Impulse signal. 
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82 Control Systems 

The impulse function is zero for all t ;t! 0 and it is infinity at t = O. It rises to infinity at t = 0- and 
comes back to zero at t = 0+ enclosing a finite area. If this area is A it is called as an impulse function 
of strength A. If A = 1 it is called a unit impulse function. Thus an impulse signal is denoted by 
f(t) = A 8 (t). 

3.2.2 Step Signal 

A step signal is shown in Fig. 3.2. 

Af--------

f(t) 

o ~t 

Fig. 3.2 A Step Signal. 

It is zero for t < 0 and suddenly rises to a value A at t = 0 and remains at this value for t > 0: It is 
denoted by f(t) = Au (t). If A = 1, it is called a unit step function. 

3.2.3 Ramp signal 

A ramp signal is shown in Fig. 3.3. 

A 

f(t) 

1.0 ~t 

Fig. 3.3 A Ramp Signal. 

It is zero for t < 0 and uniformly increases with a slope equal to A. It is denoted by f (t) = At. 
If the slope is unity, then it is called a unit ramp signal. 

3.2.4 Parabolic signal 

A parabolic signal is shpwn in Fig. 3.4. 

Fig. 3.4 A unit parabolic signal. 

A 
2 

f(t) 

1.0 ~t 
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At2 
A parabolic signal is denoted by f (t) == 2' If A is equal to unity then it is known as a unit 

parabolic signal. 

It can be easily verified that the step function is obtained by integrating the impulse function from 
o to 00; a ramp function is obtained by integrating the step function and finally the prabolic function 
is obtained by integrating the ramp function. Similarly ramp function, step function and impulse 
function can be to obtained by successive differentiations of the parabolic function. 

Such a set of functions which are derived from one another are knowp. as singularity functions. If 
the response of a linear system is known for anyone of these input signals, the response to any other 
signal, out of these singularity functions, can be obtained by either differentiation or integration of the 
known response. 

3.3 Representation of Systems 

The input output description of the system is mathematically represented either as a differential 
equation or a transfer function. 

The differential equation representation is known as a time domain representation and the transfer 
function is said to be a frequency domain representaiton. We will be considering the transfer function 
representation for all our analysis and design of control systems. 

The open loop transfer function of a system is represented in the following two forms. 

1. Pole-zero form 

G(s)==K (s+z,)(S+z2)···(s+zm) 
I (s+P,)(s+P2) ... (s+Pn) 

Zeros occur at s == -zl' -~, - - -, -~ 

Poles occur at s == -PI' - P2' - - -, -Pm 

..... (3.1) 

The poles and zeros may be simple or repeated. Poles and zeros may occur at the origin. In the 
case where some of the poles occur at the origin, the transfer function may be written as 

K, (s + z,)(s + Z2)"'(S + zm) G( s) == -r----'--'--'-'--'--"-'----'---"'-'--

S (s+Pr+,)(s+Pr+2) ... (s+Pn) 
..... (3.2) 

The poles at the origin are given by the term ~. The term ! indicates an integration in the 
sr s 

1 
system and hence - indicates the number of integrations present in the system. Poles at 

sr 

origin influence the steadystate performance of the system as will be explained later in this 
chapter. Hence the systems are classified according to the number of poles at the origion. 

If r == 0, the system has no pole at the origin and hence is known as a type - ° system. 
If r == 1, there is one pole at the origin and the system is known as a type - 1 system. Similarly 
if r == 2, the system is known as type - 2 system. Thus it is clear that the type of a system is 
given by the number of poles it has at the origin. 
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2. Time Constant Form 

The open loop transfer function of a system may also be written as, 

K('tzl s + 1) ('tz2 S + 1) ... ('tzm S + 1) 
G(s) = -----=------=--.,--------=------,---

('tP1s + 1) ('t P2 s + 1) ... ('tPn S + 1) 

Control Systems 

..... (3.3) 

The poles and zeros are related to the respective time constants by the relation 

for i = 1, 2, ..... m 

1 
p. = - for j = 1, 2, ..... n 

J 't 
PJ 

The gain constans KI and K are related by 

m 

1t z, 
K=K ~ 

1 n 

1t PJ 
J=I 

The two forms described above are equivalent and are used whereever convenience demands 
the use of a particular form. 

In either of the forms, the degree of the denomination polynomial of G(s) is known as the 
order of the system. The complexity of the system is indicated by the order of the system. In 
general, systems of order greater than 2, are difficult to analyse and hence, it is a practice to 
approximate higher order systems by second order systems, for the purpose of analysis. 

Let us now find the response of first order and second order systems to the test signals 
discussed in the previous section. 

The impulse test signal is difficult to produce in a laboratory. But the response of a system to 
an impulse has great significance in studying the behavior of the system. The response to a unit 
impulse is known as impulse response of the system. This is also known as the natural response 
of the system. 

For a unit impulse function, R(s) = 1 

and C(s) = T(s).1 

and c(t) = fl [T(s)] 

The Laplace inverse ofT(s) is the impulse response of the system and is usually denoted by h(t). 

.. fl [T(s)] = h(t) 

If we know the impulse response of any system, we can easily calculate the response to any 
other arbitrary input vet) by using convolution integral, namely 

t 

c(t) = f h('t) vet - .) d't 
o 

Since the impulse function is difficult to generate in a laboratory at is seldon used as a test signal. 
Therefore, we will concentrate on other three inputs, namely, unit step, unit velocity and unit 
acceleration inputs and find the response of first order and second order systems to these inputs. 
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3.4 First Order System 

3.4.1 Response to a Unit Step Input 

Consider a feedback system with G(s) = ~ as show in Fig. 3.5. 
1:S 

R(s) + 

Fig. 3.5 A first order feedback system. 

The closed loop transfer function of the system is given by 

T(s) = C(s) = _1_ 
R(s) 1:S + 1 

For a unit step input R (s) = ! and the output is given by 
s 

I 
C(s)- --­

s(1:S + 1) 

Inverse Laplace transformation yields 

c(t) = 1 - e-th 

The plot of c(t) Vs t is shown in Fig. 3.6. 

1.0 

0.632 -

c(t) 

Fig. 3.6 Unit step response of a first order system. 

85 

C(s) 

..... (3.4) 

..... (3.5) 

..... (3.6) 

The response is an exponentially increasing function and it approaches a value of unity as t ~ 00. 

At t = 1: the response reaches a value, 

c(1:) = 1 - e- l = 0.632 

which is 63.2 percent of the steady value. This time, 1:, is known as the time constant of the system. 
One of the characteristics which we would like to know about the system is its speed of response or 
how fast the response is approaching the final value. The time constant 1: is indicative of this measure 
and the speed of response is inversely proportional to the time constant of the system. 
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86 Control Systems 

Another important characteristic of the system is the error between the desired value and the 
actual value under steady state conditions. This quantity is known as the steady state error of the 

- system and is denoted by e ss. 

The error E(s) for a unity feedback system is given by 

E(s) = R(s) - C(s) 

= R (s) _ G(s) R(s) 
1 + G(s) 

R(s) 

1 + G(s) 

1 1 
For the system under consideration G(s) = -, R(s) = - and therefore 

'ts s 

't 
E(s) = --

'ts + 1 
e (t) = e- tJ, 

..... (3.7) 

As t ~ IX) e (t) ~ O. Thus the output of the first order system approaches the reference input, 
which is the desired output, without any error. In other words, we say a first order system tracks the 
step input without any steadystate error. 

3.4.2 Response to a Unit Ramp Input or Unit Velocity Input 

The response of the system in Fig. 3.4 for a unit ramp input, for which, 

1 
R(s) = 2' 

s 
is given by, 

1 
C(s) = S2 ('ts + 1) 

The time response is obtained by taking inverse Laplace transform of eqn. (3.9). 

c(t) = t - 't (1 - e-t1,) 

If eqn. (3.10) is differentiated we get 

dc(t) -tJ, 
-- = 1-e 

dt 

..... (3.9) 

..... (3.10) 

..... (3.11) 

Eqn. (3.11) is seen to be identical to eqn. (3.6) which is the response of the system to a step input. 
Thus no additional information about the speed of response is obtained by considering a ramp input. 
But let us see the effect on the steadystate error. As before, 

1 'ts 't 
E(s) = ~ . 'ts + 1 = s('ts + 1) 

e (t) = 't (1 - e-t1,) 
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and Lt ess = e(t) = 1:' 
t~oo 

..... (3.12) 

Thus the steady state error is equal to the time constant of the system. The first order system, 
therefore, can not track the ramp input without a finite steady state error. If the time constant is 
reduced not only the speed of response increases but also the steady state error for ramp input 
decreases. Hence the ramp input is important to the extent that it produces a finite steady state error. 
Instead of finding the entire response, it is sufficient to estimate the steady state value by using the 
final value theorem. Thus 

ess = Lt s E(s) 
s~O 

Lt 1:'S 

S ~O s(1:'s+ 1) 

=1:' 

which is same as given by eqn. (3.12) 

The response ofa first order system for unit ramp input is plotted in Fig. 3.7. 

c(t) 

ret) 

Fig. 3.7 Unit ramp response of a first order system. 

3.4.3 Response to a Unit Parabolic or Acceleration Input 

The response of a first order system to a unit parabolic input, for which 

1 
R(s) = - is given by, 

S3 

1 
C( s) = -'s 3:-(-1:'s-+-I-) 

..... (3.13) 
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Differentiating eqn. (3.13), we get, 

1 dc(t) --I 
-- =-,+t+, e t 

dt 

..... (3.14) 

Eqn. (3.14) is seen to be same as eqn. (3.10), which is the response of the first order system to 
unit velocity input. Thus subjecting the first order system to a unit parabolic input does not give any 
additional information regarding transient behaviour of the system. But, the steady state error, for a 
prabolic input is given by, 

e (t) = r (t) - c (t) 

t 2 t 2 -~t 
= - _,2+,t __ +,2 e t 

2 2 

Lt 
ess e (t) = 00 

t~oo 

Thus a first ordr system has infinite state error for a prabolic input. The steady state error can be 
easily obtained by using the final value theorem as : 

ess 
Lt s E(s) = Lt R(s) 

s~O s~O ,+1 

Lt s.1 

s\,s + 1) 
=00 

s~O 

Summarizing the analysis of first order system, we can say that the step input yields the desired 
information about the speed of transient response. It is observed that the speed of response is inversely 
proportional to the time constant r of the system. The ramp and parabolic inputs do not give any 
additional information regarding the speed of response. However, the steady state errors are different 
for these three different inputs. For a step input, the steadystate error ess is zero, for a velocity input 
there is a finite error equal to the time constant r of the system and for an acceleration input the 
steadystate error is infinity. 

It is clear from the discussion above, that it is sufficient to study the behaviour of any system to 
a unit step input for understanding its transient response and use the velocity input and acceleration 
input for understanding the steady state behaviour of the system. 

3.5 Second Order System 

3.5.1 Response to a Unit Step Input 

Consider a Type 1, second order system as shown in Fig. 3.8. Since G(s) has one pole at the origin, 
it is a type one system. 
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R(s) + C(s) 

Fig. 3.8 Second Order System. 

The closed loop transfer function is give by, 

T(s) = C(s) = 2 K ..... (3.15) 
R(s) 'ts +s+K 

The transient response of any system depends on the poles of the transfer function T(s). The 
roots of the denominator polynomial in s of T(s) are the poles of the transfer function. Thus the 
denominator polynomial ofT(s), given by 

D(s) = 't s2 + S + K 

is known as the characteristic polynomial of the system and D(s) = 0 is known as the characteristic 
equation of the system. Eqn. (3.15) is normally put in standard from, given by, 

Where, 

KI't 
T(s)= ----

S2 +!s+K/'t 
't 

00 2 
n 

OOn = ~ = natural frequency 

o = ik = damping factor 

The poles of T( s), or, the roots of the characteristic equation 

S2 + 2 0 00 s + 00 2 = 0 n n 

are given by, 
_ 2000 n ± ~40200n 2 

- 400 n 2 
Sl,2 = ---"'---=--2-"------:::..-

= - 0 OOn ±j OOn ~ 

= - 0 OOn ±j OOd 

..... (3.16) 

(assuming 0 < 1) 
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Where OJ d = OJn ~ is known as the damped natural frequency of the system. If 0 > 1, the 

two roots sl' s2 are real and we have an over damped system. If 0 = 1, the system is known as a 
critically damped system. The more common case of 0 < 1 is known as the under damped system. 

If ron is held constant and 8 is changed from 0 to 00, the locus of the roots is shown in Fig. 3.9. 
The magnitude of s 1 or s2 is OJn and is independent of 8. Hence the locus is a semicircle with radius OJn 
until 0= 1. At 0= 0, the roots are purely imaginary and are given by sl 2 = ± jOJn• For 0= 1, the roots 
are purely real, negative and equal to - OJn. As oincreases beyond unity: the roots are real and negative 
and one root approached the origin and the other approaches infinity as shown in Fig. 3.9. 

1m s 
8=0 

s-plane 

8>1 8=1 
----~------~~.-~-----------Res 

--(J)n 

Fig. 3.9 Locus of the roots of the characteristic equation. 

1 
For a unit step input R(s) = - and eqn. 3.16 can be written as 

s 

co 2 1 
C(s) = T(s). R(s) = 2 n 2 • -

S + 28cons + COn S 

Splitting eqn. (3.17) in to partial fractions, assuming oto be less than 1, we have 

C ( ) 
- Kl K2s + K3 

S - - + ----=------=-------:-
S S2 + 28cons + con 2 

Evaluating K1, K2 and K3 by the usual procedure, we have, 

1 s + 28con C (s) = - - --------7--­
S (s + 8COn)2 + con 2(1- ( 2) 

..... (3.17) 

s ~1-82 (S+8COn)2 + COn 2(1_82 ) 

..... (3.18) 
Taking inverse Laplae transform of eqn. (3.18), we have 

c (t) = 1- e-'-',' [cosm, JI-6' t+ hsmm,~ t] ..... (3.19) 
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Eqn. (3.19) can be put in a more convenient from as, 

Where ffid = ffin ~ 

and ..... (3.20) 

This response is plotted in Fig. 3.10. The response is oscillatory and as t ~ 00, it approaches unity. 

Fig. 3.10 Step response of an underdamped second order system. 

If t5 = 1, the two roots of the characteristic equations are S I =. s2 = -OJn and the response is 
given by 

C(s)= (S+ffi
n
)2·; 

and c (t) = 1 - e--<Ont 
- t ffin e--<Ont ..... (3.21) 

This is plotted in Fig. 3.11. 

1.0 - - - - - --

Fig.3.11 Response of a critically damped second order system. 

As the damping is increased from a value less than unity, the oscillations decrease and when the 
damping factor equals unity the oscillations just disappear. If t5is increaed beyond unity, the roots of 
the characteristic equation are real and negative and hence, the response approaches unity in an 
exponential way. This response is known as overdamped response and is shown in Fig. 3.12. 
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l0r------------=====~--

c(t) 

~t 

Fig. 3.12 Step response of an overdamped second order system. 

c (t) = Kl e-sl t + ~ e-s2t 

Where sl and s2 are given by, 

SI,2 =-8 ().)n±().)n ~ 
and Kl and K2 are constants. 

3.5.2 Response to a Unit Ramp Input 

For a unit ramp input, 

1 
R (s) = -­

S2 

and the output is given by, 

().) 2 
C (S) = n 

S2(S2 +28rons+ron
2 ) 

Taking inverse Laplace transform, we get the time response c (t) as, 

28 e -IiOOn t (c-;::;)) 
c (t) = t - -- + Sin ron -Jl- 82 t + ~ for 8 < 1 

ron ron ~l- 82 

The time response for a unit ramp input is plotted in Fig. 3.13. 

215 

c(t) 

Fig. 3.13 Unit ramp response of a second order system. 

Control Systems 

..... (3.22) 

..... (3.23) 
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The response reveals two aspects of the system. 

I. The transient response is of the same form as that of a unit step response. No new information 
is obtained regarding speed of response or oscillations in the system. 

2. It has a steadystate error ess = 28 ,unlike the step response, where the steady state error was 
wn 

zero. Thus, no new information is gained by obtaining the transient response of the system for a 
ramp input. The steadystate error could be easily calculated using final value theorem instead of 
laboriously solving for the entire reponse. For the given system, the error E (s) is given by 

E (s) = R (s) - C (s) 

,., 2 2 21: 2 2 
UJn _ S + uWns + Wn - Wn 

S2 S2(S2 + 28wns + 00/) - S2(S2 + 28wns + 00/) 

and from the final value theorem, 

..... (3.24) 

In a similar manner, the unit parabolic input does not yield any fresh information about the transient 
response. The steadystate error can be obtained using final value theorem in this case also. For the 
given system, for a unit acceleration input, 

3.5.3 

e = ao 
55 

Time Domain Specifications of a Second Order System 

The performance of a system is usually evaluated in terms of the following qualities. 

I. How fast it is able to respond to the input, 

2. How fast it is reaching the desired output, 

..... (3.25) 

3. What is the error between the desired output and the actual output, once the transients 
die down and steady state is achieved, 

4. Does it oscillate around the desired value, 

and 5. Is the output continuously increasing with time or is it bounded. 

The last aspect is concerned with the stability of the system and we would require the system to 
be stable. This aspect will be considered later. The first four questions will be answered in terms of 
time domain specifications of the system based on its response to a unit step input. These are the 
specifications to be given for the design of a controller for a given system. 

In section 3.5, we have obtained the response of a type I second order system to a unit step input. 
The step response of a typical underdamped second order system is plotted in Fig. 3.14. 
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It is observed that, for an underdamped system, there are two complex conjugate poles. Usually, 
even if a system is of higher order, the two complex conjugate poles nearest to the j OJ - axis (called 
dominant poles) are considered and the system is approximated by a second order system. Thus, in 
designing any system, certain design specifications are given based on the typical underdamped step 
response shown as Fig. 3.14. 

2.0 \ 
\ 

c(t) t \\\ 

1.0 

0.5 

"­
" 

ts 

Fig. 3.14 Time domain specifications of a second order system. 

The design specifications are: 

tolerance band 

t --=-----=--=----
-== 1-=---

t.D 

1. Delay time td: It is the time required for the response to reach 50% of the steady state value 
for the first time 

2. Rise time tr: It is the time required for the response to reach 100% of the steady state value 
for under damped systems. However, for over damped systems, it is taken as the time required 
for the response to rise from 10% to 90% of the steadystate value. 

3. Peak time tp: It is the time required for the response to reach the maximum or Peak value of 
the response. 

4. Peak overshoot M : It is defined as the difference between the peak value of the response and 
the steady state vafue. It is usually expressed in percent of the steady state value. If the time for 
the peak is tp' percent peak overshoot is given by, 

c(tp) - c(oo) 
Percent peak overshoot ~ = c( 00) x 100. . .... (3 .26) 

For systems of type 1 and higher, the steady state value c (00) is equal to unity, the same as the 
input. 

5. Settling time ts : It is the time required for the response to reach and remain within a specified 
tolerance limits (usually ± 2% or ± 5%) around the steady state value. 

6. Steady state error ess : It is the error betwen the desired output and the actual output as t ~ 00 
or under steadystate conditions. The desired output is given by the reference input r (t) and 

Lt 
therefore, ess = [ret) - c(t)] 

t~oo 
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From the above specifications it can be easily seen that the time response of a system for a unit 

step input is almost fixed once these specifications are given. But it is to be observed that all the above 

specifications are not independent of each other and hence they have to be specified in such a way 

that they are consistent with others. 

Let us now obtain the expressions for some of the above design specifications in terms of the 

damping factor 0 and natural frequency (On" 

1. Rise time ( t
T

) 

If we consider an underdamped system, from the definition of the rise time, it is the time 

required for the response to reach 100% of its steadystate value for the first time. Hence from 

eqn. (3.20). 

Or 

e-&Dntr 

Since r:--:::; cannot be equal to zero, 
"1- 02 

and 

2. Peak time (tp ) 

Sin (rod tr + 4» = 0 

rod tr + 4> = 1t 

1t-4> 
t = ----===== 
r ron~ 

-I ~1-02 
1t - tan 

o ..... (3.27) 

At the peak time, t p, the response attains its maximum value and this can be obtained by 

differentiating c (t) and equating it to zero. Thus, 

-ocont 
dc(t) oro --.'5 t • e 
-- = n e (On SIll (rod t + 4» - -~==2= COS (rodt + 4». rod = 0 

dt ~1-02 1-0 

Simplifying we have, 

o Sin (rodt + 4» - ~1- 02 cos (rodt + 4» = 0 
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This can be written as, 

where 

or 

Here 

Cos ~ Sin (rodt + ~) - Sin ~ cos (rodt + ~) = 0 

~1-o2 
tan~= 0 

for n = 0, 1, 2, ... 

n = 0 Corresponds to its minimum value at t = 0 

n = 1 Corresponds to its first peak value at t = tp 

n = 2 Corresponds to its first undershoot 

n = 3 Corresponds to its second overshoot and so on 

Hence for n = 1 

1t 
t = -----;=== 
p ron~ 

Control Systems 

..... (3.28) 

Thus, we see that the peak time depends on both wn and 15. If we consider the product of wn 
and tp' which may be called as normalised peak time, we can plot the variation of this normalised 
peak time with the damping factor t5. This is shown in Fig. 3.15. 

4.0 

3.8 

3.6 

0.2 0.4 0.6 0.8 1.0 
~o 

Fig. 3.15 Normalised peak time ron tp Vs 0 for a second order system. 

3. Peak overshoot ( MJT) 

The peak overshoot is defmed as 

~ = c (tp) - 1 
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oron lt 

e-ron~ 
Mp = ~ Sin ~ (": Sin (1t +~) = -Sin~) 

-ltO 

= e
k02 CSin~=~) 

97 

Hence, peak overshoot, expressed as a percentage of steady state value, is given by, 

-ltO 

M = 100 e
JI-02 

% 
p ..... (3.29) 

It may be observed that peak overshoot My' is a function of the damping factor 0 only. Its 
variation with damping factor is shown in rig. 3.16. 

%M 
p 

100 

80 

60 

40 

20 

0.2 0.4 0.6 0.8 l.0 
-'0 

Fig. 3.16 Percent overshoot Mp Vs 0 for a second order system. 

4. Settling time ( ts ) 

The time varying term in the step response, c (t), consists of a product of two terms; namely, 

-0 ron t 

an exponentially delaying term, h and a sinusoidal term, Sin (OJ; + rP). It is clear that 

1-8 

-oro t 

the response is a decaying sinusoid, the envelop of which is given by b. Thus, the 

1-8 
response reaches and remains within a given band, around the steadystate value, when this 
envelop crosses the tolerance band. Once this envelop reaches this value, there is no possibility 
of subsequent oscillations to go beyond these tolerane limits. Thus for a 2% tolerance band, 

e -0 ronts 

r---2 = 0.02 

"1-8 
For low values of 0, (j « 1 and therefore e-O ronts ::::: 0.02 

4 
t---=4. 
s - 8ro

n 

where .. is the time constant of the exponential term. 

..... (3.30) 
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Eqn. (3.30) shows that the settling time is a function of both 8and lVn. Since damping factor is an 
important design specification, we would like to know the variation of the setting time with 8, with lVn 
fixed. Or, in otherwords, we can define a normalised time lVis' and find the variation of this quantity 
with respect to 8. The step response of a second order system is plotted in Fig. 3.17 for different 
values of 8, taking normalised time lVi, on x-axis. The curves are magnified around the steady state 
value for clarity. 

c(t) 

1.02 

1.0 

0.98 

0.9 

Fig. 3.17 C (t) plotted for different value of o. 

0=0.76 

The settling time monotonically decreases as the damping is decreased from a value greater than 
one (over damped) to less than one (under damped). For 2% tolerance band, it decreases until the 
first peak of the response reaches the tolerance limit of 1.02 as shown by the curve IV in Fig. 3.17. 

Points A, B, C, and D marked on the graph give the values avs' for decreasing values of O. The peak 
value of the response reaches 1.02 at a damping factor 8= 0.76. The settling time for this value of 8 
is marked as point D on the curve. If 8 is decreased further, since the response crosses the upper 
limit 1.02, the point E no longer represents the settling time. The settling time suddenly jumps to a 
value given by the point F on the curve. Thus there is a discontinuity at 8 = 0.76. If 8 is decreased 
further the setting time increases until the first undershoot touches the lower limit of 0.98. Similarly, 
the third discontinuity occurs when the second peak touches the upper limit of 1.02 and so on. The 
variation of lVis with 8 for a tolerance band of 2% is plotted in Fig. 3.18. 

\ 
8 ~ 
6 

liln ts i I~ 
4 I: V 
2 I 1 1 

0.76 1 

0.2 0.4 0.6 0.8 1.0 
0.0 

-70 

Fig. 3.18 Variation of normalised settling time lilnt. Vs o. 
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From Fig. 3.18 it is observed that the least settling time is obtained for a damping factor of 
0= 0.76. Since settling time is a measure of how fast the system reaches a steady value, control 
systems are usually designed with a damping factor of around 0.7. Sometimes. the systems are 
designed to have even lesser damping factor because of the presence of certain nonlinearities which 
tend to produce an error under steadystate conditions. To reduce this steadystate error, normally the 

system gain K is increased, which in turn.decreases the damping (.: 8 = 2.J~T J . However, for 

robotic control, the damping is made close to and slightly higher than unity. This is because the output 
of a robotic system should reach the desired value as fast as possible, but it should never overshoot it. 

S. Steady state error (ess ) 

For a type 1 system, considered for obtaining the design specifications of a second order control 
system, the steady state error for a step input is obviously zero. Thus 

Lt 
ess = 1 - c(t) = 0 

t~oo 

The steady state error for a ramp input was obtained in eqn. (3.24) as ess = 28 
ron 

As the steadystate error, for various test signals, depends on the type of the system, it is dealt in 
the next section in detail. 

3.6 Steady State Errors 

One of the important design specifications for a control system is the steadystate error. The steady 
state output of any system should be as close to desired output as possible. If it deviates from this 
desired output, the performance of the system is not satisfactory under steadystate conditions. The 
steadystate error reflects the accuracy of the system. Among many reasons for these errors, the 
most important ones are the type of input, the type of the system and the nonlinearities present in the 
system. Since the actual input in a physical system is often a random signal, the steady state errors 
are obtained for the standard test signals, namely, step, ramp and parbaolic signals. 

3.6.1 Error Constants 

Let us consider a feedback control system shown in Fig. 3.19. 

R(s) C(s) 

Fig. 3.19 Feedback 'Control System. 
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The error signal E (s) is given by 

E (s) = R (s) - H (s) C (s) 

But C (s) = G (s) E (s) 

From eqns. (3.31) and (3.32) we have 

E (s) - R(s) 
- 1 + G(s)H(s) 

Applying fmal value theorem, we can get the steady state error ess as, 

e
ss 

= Lt s E(s) = Lt sR(s) 
s ~ 0 s ~ 0 I+G(s)H(s) 

Control Systems 

..... (3.31) 

..... (3.32) 

..... (3.33) 

Eqn. (3.33) shows that the steady state error is a function of the input R(s) and the open loop 
transfer function G(s). Let us consider various standard test signals and obtain the steadystate error 
for these inputs. 

1. Unit step or position input. 

1 
For a unit step input, R (s) = -. Hence from eqn. (3.33) 

s 

Lt 
1 s.-
s 

s ~ 0 1 + G(s)H(s) 

1 

1 + Lt G(s) H(s) 
s~ 

Let us define a useful term, position error constant Kp as, 

~ ~ Lt G(s) H(s) 
s~O 

In terms of the position error constant, ess can be written as, 

1 
e =--

ss I+K p 

2. Unit ramp or velocity input. 

For unit velocity input, R(s) = ~ and hence, 
s 

1 
Lt s.-

e = s 
ss s~O I+G(s)H(s> 

Lt 
sG(s)H(s) 

s~O 

Lt 1 

s ~ 0 s + sG(s)H(s) 

..... (3.34) 

..... (3.35) 

..... (3.36) 

..... (3.37) 
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Again, defining the velocity error constant K.. as, 

Lt K.. = s G(s) H (s) 
s~O 

e =-
55 Kv 

3. Unit parabolic or acceleration input. 

1 
For unit acceleration input R (s) = 3"" and hence 

s 

ess 
Lt s 

Lt 
s2G(s)H(s) 

s~O 

Defining the acceleration error constant Ka as, 

Lt 
K = s2 G(s) H(s) 

a s~O 

1 
e =-

55 Ka 

For the special case of unity of feedback system, H (s) 
are modified as, 

Lt 
~ = s~o G(s) 

Lt K.. = sG (s) 
s~O 

and 
Lt 2 

K = s G (S) 
a S~O 

101 

..... (3.38) 

..... (3.39) 

Lt 

..... (3.40) 

..... (3.41) 

..... (3.42) 

= 1 and eqns. (3.35) (3.38) or (3.41) 

..... (3.43) 

..... (3.44) 

..... (3.45) 

In design specifications, instead of specifying the steady state error, it is a common practice to 
specify the error constants which have a direct bearing on the steadystate error. As will be 
seen later in this section, if the open loop transfer function is specified in time constant form, 
as in eqn. (3.3), the error constant is equal to the gain of the open loop system. 

3.6.2 Dependence of Steadystate Error on Type of the System 

Let the loop transfer function G (s) H (s) or the open loop transfer function G (s) for a unity feedback 
system, be giv·en is time constant form. 

K(Tz1s + 1)(Tz2s + I) - - -­
G(s) = r 

S (Tp1s + 1)(Tp2s + I) - - --
..... (3.46) 
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As s ~ 0, the poles at the origin dominate the expression for G(s). We had defined the type of a 
system, as the number of poles present at the origin. Hence the steady state error, which depends on 

Lt Lt Lt . 
G(s), s G(s) or s2 G(s), IS dependent on the type of the system. Let us therefore 

s~O s~O s~o 

obtain the steady state error for various standard test signals for type-O, type-I and type-2 systems. 

1. Type -0 system 

From eqn. (3.46) with r = 0, the error constants are given by 

'" 

Similarly 

Lt 
~ = CJ(s) 

s~o 

Lt 
~ = s CJ(s) 

s~o 

K = Lt S2 CJ(s) = 0 
a s~O 

Lt 

s~o 

Lt 

s~o 

..... (3.47) 

The steady state errors for unit step, velocity and acceleration inputs are respectively, from 
eqns. (3.34), (3.37) and (3.40), 

2. Type 1 system 

1 1 ( . ) e
55 

= --= -- step mput 
I+Kp I+K 

e
S5 

= _1_ = 00 (velocity input) 
Kv 

1 
e = - = 00 (acceleration input) 

55 K 
a 

For type 1 system, r = 1 in eqn. (3.46) and 

and 

~ = Lt (}(s) 
s~O 

K 
= Lt - = 00 

s 

Lt Lt K 
~ = s CJ(s) = s. - = K 

s~O s~O s 

Lt Lt K 
K = s CJ(s) = s2. - = 0 

a s~O s~O S 

The steady state error for unit step, unit velocity and unit acceleration inputs are respectively, 

1 1 
e = --=- =0 

S5 l+K 00 
p 

(position) 
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1 1 
e = - = - (velocity) 

55 Ky K 

and (acceleration) 

3. Type 2-system 

For a type - 2 system r = 2 in eqn. (3.46) and 

K = Lt G(s) 
-" s ~O 

Lt K 
-=00 

s~O S2 

Lt Lt sK 
~ = s G(s) -=00 

s~O s~O S2 

Lt Lt s2K 
and Ka = s2 G(s) -=K 

s~o s~O S2 

The steady state errors for the three test inputs are, 

and 

1 1 
e = --= -- = 0 (position) 

5S I+Kp 1+00 

1 1 
e=-=-=O 

ss Ky 00 

1 1 
ess = K= K 

a 

(velocity) 

(acceleration) 

Thus a type zero system has a fmite steady state error for a unit step input and is equal to 

1 1 
e =--=--

5S I+K I+K p 

..... (3.47) 

Where K is the system gain in the time constant from. It is customary to specify the gain of a 
type zero system by ~ rather than K. 

Similarly, a type -1 system has a finite steady state error for a velocity input only and is given 
by 

1 1 
eS5 = K = K ..... (3.48) 

y 

Thus the gain of type -1 system in normally specified as ~. 
A type -2 system has a finite steady state error only for acceleration input and is given by 

1 1 
ess = K =K 

a 

As before, the gain of type -2 system is specified as Ka rather than K. 

..... (3.49) 
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The steady state errors, for various standard inputs for type - 0, type - 1 and type - 2 are 
summarized in Table. 3.1. 

Table. 3.1 Steady state errors for various inputs and type of systems 

Steadystate error ess 

Standard input Type-O Type -1 Type - 2 

Lt Lt Lt 
~= G(s) ~ = s G(s) K = s2 G(s) 

s~O s~O a s~ 0 

1 
Unit step -- 0 0 I+Kp 

1 
Unit velocity ao - 0 

Kv 

1 
Unit acceleration ao ao -

Ka 

If can be seen from Table. 3.1, as the type of the system and hence the number of integrations 
increases, more and more steady state errors become zero. Hence it may appear that it is better to 
design a system with more and more poles at the origin. But if the type of the system is higher than 
2, the systems tend to be more unstable and the dynamic errors tend to be larger. The stability aspects 
are considered in chapter 4. 

3.6.3 Generalized Error Coefficients - Error Series 

The main disadvantage of defining the.steadystate error in terms of error constants is that, only one 
of the constants is finite and non zero for a particular system, where as the other constant's are either 
zero or infmity. If any error constant is zero, the steady state error is infinity, but we do not have any 
clue as to how the error is approaching infinity. 

If the inputs are other than step, velocity or acceleration inputs, we can extend the concept of 
error constants to include inputs which can be represented by a polynomial. Many functions which 
are analytic can be represented by a polynomial in t. Let the error be given by, 

R(s) 
E(s)= I+G(s) 

Eqn. (3.50) may be written as 

Where 

E (s) = Yes). R(s) 

. 1 
Y(s)- --

1+ G(s) 

..... (3.50) 

..... (3.51) 

..... (3.52) 
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Using Convolution theorem eqn. (3:51) can be written as 

t 

e (t) = f Y (''C) r (t - .) d. 
o 

105 

.. ... (3.53) 

Assuming that r (t) has first n deriratives, r (t - r) can be expanded into a Taylor series, 

, .2" .3" , 
r (t - .) = r (t) - • r (t) + 2! r (t) - 3! r (t) ..... (3.54) 

where the primes indicate time derivatives. Substituting eqn. (3.54) into eqn. (3.53), we have, 

e (t) = J y (.) [r(t)-.r'(t)+~r"(t)-~r"'(t)----l d. 
o 2! 3! 

t ,t "t .2 
= r (t) f y (.) d • - r (t) f • y (.) d • + r (t) f -2' y (.) d • + .... 

o 0 0 • 
.. ... (3.55) 

To obtain the steady state error, we take the limit t ~ ao on both sides of eqn. (3.55) 

e = e (t) = r(t) f y(.)d. - r'(t) f -cy(.)d. + r" (t)-y(.)d ...... Lt Lt [t t .2] 
ss t~ao t~ao 0 0 2! 

.. ... (3.56) 

Q() Q() Q() .2 
ess = rss (t) f y (.) d. - r'ss (t) f -cy (.) d. + rss" (t) f -2 y(.) d. + ..... 

o 0 0 ! 
.. ... (3.57) 

Where the suffix ss denotes steady state part of the function. It may be further observed that the 

integrals in eqn. (3.57) yield constant values. Hence eqn. (3.57) may be written as, 

, C2 " C (n) 
ess = Co rss (t) + C1 r ss (t) + -, r ss (t) + ... + ~ r S5 (t) + 

2. n. 

Where, 

Q() 

Co = f y(.) d. 
o 

Q() 

C1 = - f .y (.) d. 
o 

Q() 

Cn = (_I)n f ~ (.) d. 
o 

...... (3.58) 

.. ... (3.59) 

.. ... (3.60) 

.. ... (3.61) 
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The coefficients Co' Cl' C2, .•. Cn' ... are defined as generalized error coefficients. Eqn. (3.58) is 
known as generalised error series. It may be observed that the steady state error is obtained as a 
function of time, in terms of generalised error coefficients, the steady state part of the input and its 
derivatives. For a given transfer function G(s), the error coefficients can be easily evaluated as 
shown in the following. 

Let yet) = 1:1 Yes) 

00 

Yes) = J yet) e-s'r d. 
o 

Lt 
yes) 

s~o 

00 

J y ('t) d. 
o 

Co 

Taking the derivative of eqn. (3.62) with respect to s, 

We have, 

dyes) = j y (.) (_.) e-st d • 
ds 0 

Now taking the limit of equation (3.64) as s ~ 0, we have, 

Lt dyes) = j y (.) (_ 't) Lt e-5'r d 't 

s~o ds 0 s~O 

o 

Similarly, 

C = Lt d 2y(s) 

2 s~O ds2 

C = Lt d3y(s) 

3 s~O ds3 

C = Lt dny(s) 

n s ~ 0 dsn 

.. ... (3.62) 

..... (3.63) " 

.. ... (3.64) 

..... (3.65) 

..... (3.66) 

..... (3.67) 

..... (3.68) 

Thus the constants can be evaluated using eqns. (3.63), (3.65) and (3.66) and so on and the time 
variation of the steadystate error can be obtained using eqn. (3.58). 
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The advantages of error series can be summarized as, 

1. It provides a simple way of obtaining the nature of steadystate response to almost any arbitrary 
input. 

2. We can obtain the complete steadystate response without actually solving the system differential 
equation. 

Example 3.1 

The angular position 9c of a mass is controlled by a servo system through a reference signal 9r. The 
moment of intertia of moving parts referred to the load shaft, J, is 150 kgm2 and damping torque 
coefficient referred to the load shaft, B, is 4.5 x 103 Nwm / rad / sec. The torque developed by the 
motor at the load is 7.2 x 104 Nw-m per radian of error. 

(a) Obtain the response of the system to a step input of 1 rad and determine the peak time, peak 
overshoot and frequency of transient oscillations. Also find the steadystate error for a constant 
angular velocity of 1 revolution / minute. 

(b) If a steady torque of 1000 Nwm is applied at the load shaft, determine the steadystate error. 

Solution: 

The block diagram of the system may be written as shown in Fig. 3.20. 

Fig. 3.20 Block diagram of the given system 

From the block diagram, the forward path transfer function G (s) is given by, 

KT G(s) - -----'--
s(Js+ B) 

For the given values of Kp J and B, we have 

Thus 

and 

7.2xl04 

G(s) = s(l50s + 4.5 x 103 ) 

16 

s(0.333s + 1) 

Kv= 16 

't = 0.333 sec. 

1 1 

= 2~Kv't = 2.J16 x 0.0333 

= 0.6847 
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(a) 

Control Systems 

= ~K.V - ~ 0.~~33 
= 21.91 rad/sec 

a (t) e -ron! (~ _\ f1=82i 
= 1-~ Sin con "l-o- t+tan V~-o-) 

Peak time, 

= 1 - 1.372 e-15 t Sin (15.97 t + 46.80) 

7t 7t 

= co
n
JI-02 = COd 

7t = -- = 0.1967 sec 
15.97 

Peak over shoot, Mp 

ltll 

= 100 e - ~1-1l2 
= 5.23% 

Frequency of transient oscillations, cod = 15.97 rad/sec 

. 27t 
Steady state error 9R = - rad/sec 

60 
~= 16 

27t 
ess = 60 x 16 = 6.54 x 10-3 rad 

(b) When a load torque of 1000 Nwm is applied at the load shaft, using super position theorem, 
the error is nothing but the response due to this load torque acting as a step input with 

Fig. 3.21 Block diagram of the system with load torque applied 

OR = O. The block diagram may be modified as shown in Fig. 3.21. 

From Fig. 3.21, we have 

1 
Oc(s) = s(Js+B) 

TL(s) 1+ Kr 
s(Js+B) 

1000 
°c( s) = -s(-1-50-s-2 -+-4-.5-x-l-0-3 s-+-7-.-2-x-l 0-4-) 
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Using final value theorem, 

Lt 1000 
s~O s8c (s)= 7.2x104 

= 0.01389 rad 

= 0.796° 

Example 3.2 

The open loop transfer function of a unity feedback system is given by, 

K 
G(s)- --­

s(,tS + 1) 
K, 't>0 

109 

With a given value of K, the peak overshoot was found to be 80%. It is proposed to reduce the 
peak overshoot to 20% by decreasing the gain. Find the new value of K in terms of the old value. 

Solution: 

Let the gain be KI for a peak overshoot of 80% 

1tIlJ 

e -JHJ2 = 0.8 

1t8 1 
-====J = = In - = 0.223 
Jl-8~ 0.8 

1t2 81
2 = 0.2232 (1 - ( 2) 

Solving for 81' we get 

81 = 0.07 

Let the new gain be Kz for a peak overshoot of 20% 

Solving for 82, 

82 = 0.456 

1 
But 8 = 2JK. 

~ ~ ~.2JK" ~ t, 
82 2 KJ't KJ 
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Example 3.3 

Find the steadystate error for unit step, unit ramp and unit acceleration inputs for the following 
systems. 

1. 
10 

s(O.ls + 1)(0.5s + 1) 
2. 

1000(s + 1) 

(s + 10)(s + 50) 
3. 

Solution: 

1. 

(a) 

10 
G(s) - -----­

s(O.ls + 1)(0.5s + 1) 

Unit step input 

Lt 
~ = G (s) = CXl 

s~O 

1 
ess = -- =0 

l+Kp 

(b) Unit ramp input 

Lt 
~ = s G(s) 

s~O 

Lt 10 
------=10 

s ~ 0 (O.1s + 1)(0.5s + 1) 

1 1 
ess = -=- = 0.1 

Kv 10 

(c) Unit acceleration input 

Lt s2 G(s) = Lt lOs = 0 
s ~ 0 s ~ 0 (O.ls + 1)(0.5s + 1) 

1000 

S2 (s + l)(s + 20) 
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2. 

3. 

1000(s + 1) 
G( s) - ------''------~ 

(s + 10)(s + 50) 

The transfer function is given in pole zero fonn. Let us put this in time constant fonn. 

G(s) = 500(0. Is + 1)(0.02s + 1) 
1000(s+l) 2(s + 1) 

(O.ls + 1)(0.02s + 1) 

Since this is a type zero system we can directly obtain 

K" = 2, ~ = 0 Ka = 0 

The steadystate errors are, 

(a) Unit step input 

1 1 1 
e =--=--=-
551+Kp 1+2 3 

(b) Unit ramp input 

1 1 
e =-=-=00 

55 Ky 0 

(c) Unit acceleration input 

e =-=-=00 
55 Ka 0 

1000 
G(s) - -::----­

- S2 (s + 1)(s + 20) 

Expressing G (s) in time constant fonn, 

1000 50 
G(s) = 20S2 (s + 1)(0.05s + 1) = S2 (s + 1)(0.05s + 1) 

The error constants for a type 2 system are 

K" = 00 ~ = 00 Ka = 50 

The steadystate errors for, 

(a) a unit step input 

1 1 
e=--=-=O 

55 I+K 00 
p 

(b) a unit ramp input 

1 1 
e=-=-=O 

55 Ky 00 

(c) a unit acceleration input 

1 1 
e = -=- =0.02 

55 Ka 50 

111 

www.EasyEngineering.net

www.EasyEngineering.net

www.EasyEngineering.net

http://easyengineering.net
http://easyengineering.net


112 Control Systems 

Example 3.4 

The open loop transfer function of a servo system is given by, 

G(s) = 10 
s(0.2s + 1) 

Evaluate the error series for the input, 

Solution: 

3t2 

ret) = 1 + 2t + 2 

10 
G(s)- --­

s(0.2s + 1) 

1 s(0.2s + 1) 
Y( s) = 1 + G(s) = -1-+--:1'-::0-- = -0.---'2S'-=2-+-

S
-+...:....1-0 

s(0.2s + 1) 

The generalised error coefficients are given by, 

Lt 
Co = s~O Yes) 

C1 

C1 

Lt s(0.2s + 1) 
--'-:----'-- = 0 

s~O 0.2S2 +s+lO 

Lt dyes) 

s~O ds 

Lt (0.2s2 + s + 10)(0.4s + 1) - s (0.2s + 1)(O.4s + 1) 

s~O (0.2s2 + s + 10)2 

Lt lO(O.4s + 1) 

s~O (0.2s2 + s + 10)2 

10 
= - =0.1 
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C = Lt 
2 

s~O 

d2y(s) 

ds 2 

Lt 

s~O 

(0.2s2 + s + 10)2 (4) -1 O(O.4s + 1)[2(0.2s2 + s + 10)(0.4s + 1)1 
(0.2s 2 + s + 10)4 

400-10(20) 
------:-'-----'- = 0.02 

(10)4 

www.EasyEngineering.net

www.EasyEngineering.net

www.EasyEngineering.net

http://easyengineering.net
http://easyengineering.net


Time Response Analysis of Control Systems 

The input and its deriatives are, 

3t2 

r(t) = 1 + 2 t + -
2 

6t 
r' (t) = 2 + - = 2 + 3t 

2 

r" (t) = 3 

r'" (t) = 0 = riv (t) = rV (t) 

The error series is given by, 

C 
ess (t) = Co rss (t) + C, rss' (t) + 2 ~ rss" (t) 

e (t) = 0 (1 + 2t + 3t2) + 0.1 (2 + 3t) + 0.02 (3) 
ss 2 2 

= 0.23 + O.3t 

3.7 Design Specifications of a Control System 

113 

A second order control system is required to satisfy three main specifications, namely, peak overshoot 
to a step input (Mp), settling time (ts) and steadystate accuracy. Peak overshoot is indicative of 
damping (b) in the system and for a given damping settling time indicates the undamped natural 
frequency of the system. The steadystate accuracy is specified by the steadystate error and error can 
be made to lie within given limits by choosing an appropriate error constant Kp, Kvor Ka depending 
on the type of the system. If any other specifications like rise time or delay time are also specified, 
they must be specified consistent with the other specifications. Most control systems are designed to 
be underdamped with a damping factor lying between 0.3 and 0.7. Let us examine the limitations in 
choosing the parameters of a type one, second order system to satisfy all the design specifications. 

The expressions for 0, ts and e ss are given by, 

1 
0= -== 

2~Kv't 

4 
t =-­
sown 

..... (3.69) 

..... (3.70) 

ess = K ..... (3.71) 
v 

In a second order system, the only variables are Kv and T. Even if both of them are variable, we 
can satisfy only two out of the three specifications namely, 0, ts and ess' Generally, we are given a 
system for which a suitable controller has to be designed. This means that the system time constant 
is fixed and the only variable available is the system gain Ky. By using a proportional controller, the 
gain can be adjusted to suit the requirement of the steadystate accuracy. If Ky is adjusted for an 
allowable limit on steadystate error, this value of Ky is usually large enough to make the system 
damping considerably less, as given by eqn. (3.69). Thus the transient behaviours of the system is 
not satisfactory. Hence suitable compensation schemes must be designed so that the dynamic response 
improves. Some control schemes used in industry are discussed in the next section. 
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