<u>MSE-402</u>

FUEL, FURNACE & REFRATORY

Dr. Alka Gupta

Combustion, a chemical reaction between substances, usually including oxygen and usually accompanied by the generation of heat and light in the form of flame.

Types of Combustion:

- Rapid Combustion,
- Spontaneous Combustion, and.
- Explosive Combustion.

Components of Combustion:

Oxygen, heat, and fuel are frequently referred to as the "fire triangle." Add in the fourth element, the chemical reaction, and you actually have a fire "tetrahedron." The important thing to remember is: take any of these four things away, and you will not have a fire or the fire will be extinguished.

Products of Combustion

- Carbon Dioxide.
- Carbon Monoxide.
- Sulfur Dioxide.
- Nitrogen Oxides.
- Lead.
- Particulate Matter.

Type of Combustion reaction \rightarrow Redox

Combustion is a high-temperature exothermic (heat releasing) redox (oxygen adding) chemical reaction between a fuel and an oxidant, usually atmospheric oxygen, that produces oxidized, often gaseous products, in a mixture termed as smoke.

Typical hydrocarbons are:

Methane CH₄ Ethane C₂H₆

Propane C_3H_8

Butane C₄H10

Pentane C₅H₁₂

Hexane C₆H₁₄

Heptane C₇H₁₆

Octane C₈H₁₈

Ethene C₂H₄(Ethylene)

Propene C₃H₆ (Propylene)

Ethyne C₂H₂ (Acetylene)

Benzenol C₆H₆ (Benzene)

Cyclohexane C₆H₁₂

The combustion equation follows the following rule:

 $C_aH_b + (a+b/4)O_2 = (a)CO_2 + (b/2)H_2O$

****To summarize, for combustion to occur three things must be present: a fuel to be burned, a source of oxygen, and a source of heat.