B Pharm, 3rd Semester PHARMACEUTICAL MICROBIOLOGY BP 303 (T) Unit I Structure of Bacteria

> Dr. Meenakshi Gupta Senior Assistant Professor University Institute of Pharmacy C. S. J. M. University Kanpur U.P

Contents

Bacteria

- Bacteria Classification
 - Based on shape & Arrangement
 - Based on Bacterial Arrangement of Cocci
 - Based on Bacterial Arrangement of Bacilli
- Study of ultra-structure of Bacteria
- Gram Positive & Gram Negative Bacteria
- Difference between Gram Positive & Gram Negative Bacteria
- Sporulation

Bacteria

- Prokaryotic Cell
- Unicellular Organism
- Size range 0.75µm-5µm(microscopic size)
- Found everywhere on earth also in extreme environment like hot springs, sea, ocean, soil, rocks within earth crust, air etc
- They have special and specific characteristic features that helps them to survive in a specific environments, such as streams, ponds, lakes, rivers, oceans, hot-springs, gastro-intestinal tract (GIT), roots of plants, and even in oil wells etc.
- They are both beneficial and harmful(cause disease)
- Reproduce by binary fission

Prokaryota/Monera

Monera		Similarity	Differences	Examples
	Eubacteria(major group)	Unicellular, Prokaryotic	 Cell wall of peptidoglycan, Found everywhere on earth, can not live in extreme environment Both helpful & harmful for humans 	E.coli, Cyanobacteria
	Archaebact eria(minor group)	Unicellular, Prokaryotic	 Cell wall of other material, Live in extreme environment (Hostile) None infect humans 	Halobacter, Methanococc

Bacteria Classification: Based on shape & Arrangement

Based on shape –

- **1.** Cocci are round cells,
- 2. Bacilli (or bacillus for a single cell) are rod-shaped.
- 3. Spirilla (or spirillum for a single cell) are curved, spiral or twisted
- **Based on arrangement**

Clusters, tetrads, sarcina, pairs, chains

https://in.pinterest.com/pin/288863763578125688/

Bacteria Classification: Based on Bacterial Arrangement of Cocci

Based on planes of division, Cocci (or coccus for a si cell) can appear in several distinct arrangements:

- Diplococci- Pairs of cocci
 - Eg.Neisseria gonorrnoeae
- Streptococci- rows or chains of cocci
 - Eg. Enterococcus faecalis, Lactococcus
 - Tetrads- four cells arrangement in a square
 - Eg. Micrococcus
 - Staphylococci- grapelike clusters of cells
 - Eg. Staphylococci aureus
 - Sarcinae- packets of eight or more cells
 - Eg.Sarcina lutea

https://www.quora.com/Why-some-bacterias-are-monococcus-somedicoccus

Diplococci-Eg. Neisseria gonorrnoeae

tps://microbenotes.com/habitat-and-morphology-of-neisseria-gonorrhoeae

Streptococci-Lactococcus lactis

https://in.pinterest.com/pin/418060777889864956/

Tetrads-Micrococcus

https://microbewiki.kenyon.edu/index.php/Micrococcus

Staphylococci-Staphylococci

https://in.pinterest.com/ldsntexas/staphylococcus-aureus/

Sarcinae-Sarcina lutea

https://jb.asm.org/content/jb/79/1/132.full.pdf

Bacteria Classification: Based on Bacterial Arrangement of Bacilli

- Monobacillus: single rod-shaped cell remains after dividing.Eg.
- Diplobacilli: cells remain in pairs after dividing.
- Streptobacilli: rods arranged in chains after dividing.
- Palisades: rods arranged side-by-side instead of end-to-end that are partially attached.
- Coccobacillus: slightly oval shape rods that resemble both coccus and bacillus bacteria.

https://en.m.wikipedia.org/wiki/File:Arrangement of bacilli bacteria.svg

Bacteria Classification:

SEM 1μm

https://microbiologyinfo.com/different-size-shape-and-arrangement-of-bacterial-cells/

Streptobacilli

Bacteria Classification based on shape: Spirilla

Twisted shaped

🎦 ' 5 μm

Spiral shaped

Curved Shaped

Other shapes of Bacteria

Pleomorphic is the ability to change or alter the size and shape under the stress of pressure of environmental factors. One example is *Mycoplasma pneumonia*, which is the causative agent of pneumonia

Structure of Bacteria

https://openstax.org/books/microbiology/pages/3-3-unique-characteristics-of-prokaryotic-cells

Structure of Bacteria

- Structure External to Cell Wall-
 - Flagella,
 - Pili,
 - Capsule, microcapsule, Slime, Sheaths
- Cell Wall
- Structure Internal to Cell Wall-
 - Cytoplasmic Membrane,
 - Cytoplasm/Protoplasm/Spheroplasm
 - Mesosome
 - Ribosomes
 - Nucleoid
 - Plasmid
 - Cytoplasmic Inclusion

Structure External to Cell Wall: Flagella

- Flagella are hair like helical appendages that protrude through cell wall present in motile bacteria.
- Function- provide motility and found only in motile bacteria
- Composition-Flagellin protein

Types of Flagellar Arrangement

Polar/ Monotrichous – single flagellum at one pole

Lophotrichous – tuft of flagella at one pole

Amphitrichous – flagella at both poles

Peritrichous - flagella all over

Amphilophotrichous – tuft of flagella at both ends

http://botanystudies.com/structure-and-function-of-

Structure of Flagella

Basal body anchors flagella into cytoplasmic membrane and permits it to rotate.lt consists of rings include: L-ring: Outer ring is affix in lipopolysaccharide layer, P-ring: fastened to peptidoglycan layer, Cring: Anchored in the cytoplasm, M-S ring: Anchored in the cytoplasmic membrane

Hook

Filament is thin hair-like structure arising from the hook made up of flagellin protein

Structure External to Cell Wall: Pili

- Pili-Non helical, hollow filamentous structure, thinner, shorter and more numerous than flagella. They are not involved in motility.
- Function-allow pathogenic bacteria to attached to epithelial cell of respiratory tract, GIT tract or genitourinary tract (therefore not easily washed away) and help in establishing infection.

Structure External to Cell Wall: Capsule

- Capsule- Viscous covering composed of polysaccharide
- Microcapsule- Layer is thin
- Slime-layer is loosely associated with the bacterium and can be easily washed off, whereas a capsule is attached tightly
 - Sheaths-Bacterial cell enclosed in hollow tube. Usually sheathed bacteria are found in fresh water and marine.

- Function-Provide protection against drying
- Block attachment of bacteriophages
- Provide antiphagocytic property that inhibits engulfment of pathogenic bacteria by WBC
- Enhance virulence
- Promote attachment to the surface

Bacterial Cell Wall

- cell wall is very rigid wall present beneath the capsule that give specific shape to the bacteria.
- Maintains osmotic integrity and protects the cell from bursting due to osmatic shock in hypotonic environment.
- Bacteria are classified into two groups based on the difference in cell wall-
 - Gram Positive
 - Gram Negative

Cell wall of Gram Positive & Gram Negative Bacteria

LPS-Lipid A (Pyrogenicity and lethal effect), Polysaccharide core and O antigen It has toxic properties and also known as Endotoxin

https://byjus.com/biology/difference-between-gram-positive-and-gram-negative-bacteria/

Difference between Gram Positive & Gram Negative Bacteria

Character	Gram Positive	Gram Negative
Cell wall	simple	More complicated
Thickness	Thick, homogeneous(20-25 nm)	Thin, heterogeneous(10-15nm)
Number of layers	One	Τωο
Chemical composition	Peptidoglycan, Teichoic acid and lipotechoic acid	Lipopolysaccharide, lipoproteins and peptidoglycan
Lipid	not present	Present(20-30%)
Peptidoglycan(Murein)	More than 50%	Less (10%)
Teichoic acid	present	Absent
Porins protein	Absent	Present
Lipopolysaccharide	Absent	Present
Toxin	Exotoxin	Exotoxin or Endotoxin
Antibiotic effect	More susceptible	More resistant(because their cell wall is impenetrable)
Examples	Staphylococcus, Streptococcus	Escherichia, Salmonella

This technique was proposed by Christian Gram 1884

https://www.slideserve.com/gezana/principle-of-staining-technique

Gram Staining Technique

- Gram-positive and gram-negative bacteria are classified based on their ability to hold the gram stain.
- Gram-positive bacteria, retains the gram stain and show a visible violet colour upon the applying crystal violet mordant(iodine), ethanol(alcohol) and safranin.
- The gram-negative bacteria are de-stained because of the alcohol wash and attain the stained of counterstain such as safranin and appear as pink.

Cell Wall Exceptions

- Mycoplasma lack a rigid cell wall and is smallest known organisms with smallest genomes
 - Mycoplasma are pleomorphic and exhibit different shapes- cocci, short rods, short spirals, and sometimes doughnut shape
- Mycoplasma pneumoniae cause pneumonia in humans also as parasites of animals

Cell Wall Exceptions: Bacteria with chemically unique cell walls

- Acid-Fast Cells Mycobacterium species Gram + type of cell wall Unique lipid Mycolic acid – waxy substance
- Rickettsia Cell wall contains diaminopimelic acid lacks teichoic acid.lt is obligate intracellular pathogens cause (Rickettsia rickettisii) Rocky Mountain spotted feve,Rickettsia prowazekii – epidemic typhus,Coxiella burnetti – Q fever
- Chlamydia –Cell wall contains an outer lipopolysaccharide membrane but lackspeptidoglycan , most common sexually transmitted disease,

Structure Internal to Cell Wall

- Cytoplasmic Membrane,
- Cytoplasm/Protoplasm/Spheroplasm
- Mesosome
- Ribosomes
- Nucleoid
- Plasmid
- Cytoplasmic Inclusion

Cytoplasmic Membrane/Cell Membrane/Plasma Membrane

- composed of a phospholipid (20-30%)bilayer and proteins(60-70%)and encloses the contents of the bacterial cell
- Thickness-7.5nm
- Have two types of proteins
- Integral Proteins(can be removed only by membrane destruction)
- Peripheral Proteins (can be removed by mild treatment)
- It contain several permease enzymes responsible for transportation of nutrients and chemicals in and outside the cell
- Also contain enzyme involved in respiration and metabolism

Cytoplasm & Protoplasm

- Protoplasm- Cell material consisting of proteins, ribosomes, water soluble contents, nucleoid, plasmid etc. of bacteria are bounded with cytoplasmic membrane.
- Cytoplasm- Cytoplasm of bacterial cells is gel-like that contains the nucloid, ribosomes, various macromolecules and small molecules in water solution.

Protoplasm/Spheroplasm

In Isotonic condition if

- Gram Positive bacteria
 Lysozyme/Penicillin
 Protoplasm
- Gram Negative bacteria Lysozyme/Penicillin Spheroplasm(two membranes)
- Enzyme Lysozyme dissolve the peptidoglycan of cell wall and
- Penicillin Inhibits the synthesis of peptidoglycan cell wall

Protoplasm/Spheroplasm

https://www.slideshare.net/katealyssacaton/microbiology-8609500

Mesosome

- Mesosomes are formed due to the infolding of plasma membrane,
- these are rich in enzymes that helps to perform functions like cellular respiration, DNA replication, sporulation (in sporulating bacteria) and photosynthesis in photosynthetic bacteria
 - **Responsible for export of** enzymes.

https://in.pinterest.com/pin/529454499918570283/

Nucleoid & Plasmid

- Single-celled prokaryotes do not contain nuclei. Therefore, the genetic material (DNA) of such microorganism exists as nucleoid, which is without a membrane enclosing.
- Nucleoid is bacterial single circular DNA that is located in the cytoplasm is called the nucleoid.
- Bacteria also contain smaller circular DNA molecules called plasmids. Plasmids naturally exist in bacterial cells.
- Genes carried in plasmids provide bacteria with genetic advantages, such as antibiotic resistance.

Ribosomes

- Ribosome is 70S in size composed of a 50S (large) subunit and 30S (small) subunit.
- Eucaryotic ribosome is 80S in size and is composed of a 60S and a 40S subunit.
- Involved in protein synthesis

Cytoplasmic Inclusion

- Cytoplasmic Inclusion are concentrated deposition of certain substance
- bacteria always do not live in favorable condition that contain large amounts of nutrients at all times.
- Bacteria have several methods of nutrient storage that are employed in times of plenty, for use in times of want.
- For example, many bacteria store excess carbon in the form of polyhydroxyalkanoates or glycogen.
- Some microbes store soluble nutrients, such as nitrate in vacuoles.
- Sulfur is most often stored as elemental (SO) granules which can be deposited either intra- or extracellularly. Sulfur granules are especially common in bacteria that use hydrogen sulfide as an electron source.
- Cytoplasmic inclusion can be viewed using a microscope, that are surrounded by a thin non-unit membrane to separate them from the cytoplasm.

Cytoplasmic Inclusion

Inclusion	Composition	Function	Identification
Volutin / Metachromatic Granules	Inorganic Phosphates/Polyphosphates	Reserve phosphate, possibly high-energy PO ₄	Gives reddish purple colour with methylene blue
Polyβhydroxybutyrate (PHB)	Carbon	Reservoir of energy	Stained by lipid soluble dye Nil blue
Glycogen/Starch Granules	Carbon	Reservoir of energy	Stain brown with lodine
Sulphur	Sulphur	Reserve energy and or electrons	
Cynophycine	Organic Nitrogen material		
Gas vesicles	protein shells inflated with gases	Provide buoyancy in aquatic environments	

Sporulation

Spores

- Are metabolically dormant form
- Under favorable conditions they undergo germination and produce vegetative cell(metabolically active form)
- Certain species of bacteria including *Bacillus* and *Clostridium* produce spores within cell they are called Endospores and some produce external to the cell that are called Exospores.

Endospore formation

https://www.researchgate.net/figure/Formation-of-spores-by-endospore-forming-bacteria-Upon-sensing-unfavorable-environmental fig1 271509118

References

- Hugo WB, Russell AD. "Pharmaceutical microbiology". Blackwell Science Ltd; 1998; Oxford London.
- Pelczar, M. J., E. C. S. Chan, and N. R. Krieg. "Microbiology. International edition." 1996 ;Tata McGraw Hill Inc.
- Prescott and Dunn., Industrial Microbiology, 4th edition, CBS Publishers & Distributors, Delhi.
- Carter, S. J. "Tutorial Pharmacy. Cooper and Gunn's." (1999);CBS Publisher and Distribution.

