CAPITAL ASSET PRICING AND ARBITRAGE PRICING THEORY

The Risk Reward Relationship

KEY ISSUES

Essentially, the capital asset pricing model (CAPM) is concerned with two questions:

What is the relationship between risk and return for an efficient portfolio?

What is the relationship between risk and return for an individual security?

BASIC ASSUMPTIONS

• PERFECT MARKETS

CAPITAL MARKET LINE

SECURITY MARKET LINE

RELATIONSHIP BETWEEN SMLAND CML

SML $E(R_{i}) = R_{f} + \begin{pmatrix} E(R_{M}) - R_{f} \\ \sigma_{M}^{2} \end{pmatrix} \sigma_{iM}$ SINCE $\sigma_{iM} = \rho_{iM} \sigma_{i} \sigma_{M}$ $E(R_{i}) = R_{f} + \begin{pmatrix} E(R_{M}) - R_{f} \\ \sigma_{M} \end{pmatrix} \rho_{iM} \sigma_{i}$

IF *i* **AND** *M* **ARE PERFECTLY CORRELATED** $\rho_{iM} = 1$. **SO**

CML IS A SPECIAL CASE OF SML

INPUTS REQUIRED FOR APPLYING CAPM

RISK-FREE RETURN

- RATE ON A SHORT-TERM GOVT SECURITY
- RATE ON A LONG TERM GOVT BOND

MARKET RISK PREMIUM

HISTORICAL

- DIFFERENCE BETWEEN THE AVERAGE RETURN ON STOCKS AND THE AVERAGE RISK - FREE RETURN
- **PERIOD** : AS LONG AS POSSIBLE
- AVERAGE : A.M VS. G.M.

DETERMINANTS OF RISK PREMIUM

• VARIANCE IN THE UNDERLYING ECONOMY • POLITICAL RISK • MARKET STRUCTURE

FINANO CHARA	CIAL MARKET ACTERISTICS	EXAMPLES	PREMIUM OVER THE GOVT BOND RATE (%)
EMERG	ING MARKET, WITH	SOUTH AMERICAN MARKET	S, 7.5 - 9.5
POLITI	CAL RISK	CHINA, RUSSIA	
EMERG	ING MARKETS WITH	SINGAPORE, MALAYSIA,	7.5
LIMITE	D POLITICAL RISK	THAILAND, INDIA, SOME EAS	ST
		EUROPEAN MARKETS	
DEVELO	DPED MARKETS WITH	UNITED STATES, JAPAN, U.K.	., 5.5
WIDE ST	FOCK LISTINGS	FRANCE, ITALY	
DEVELO	DPED MARKETS WITH	GERMANY, SWITZERLAND	3.5 - 4.5
LIMITE	D LISTINGS AND		
STABLE	ECONOMIES		
LIMITE STABLE	D LISTINGS AND ECONOMIES		

* Source : Aswath Damodaran Corporate Finance Theory and Practice, John Wiley.

TRIUMPH OF OPTIMISTS

ELROY DIMSON, PAUL MARCH, AND MICHAEL STANTON ... TRIUMPH OF THE OPTIMISTS, (2001)

• EQUITY RETURNS ... 16 RICH COUNTRIES ... DATA ... 1900

• GLOBAL HISTORICAL RISK PREMIUM ... 20TH CENTURY .. 4.6%

• BEST ESTIMATE OF EQUITY PREMIUM WORLDWIDE IN FUTURE IS 4 TO 5 PERCENT

CALCULATION OF BETA

 $\overline{R}_{it} = \alpha_i + \beta_i \overline{R}_{Mt} + e_{it}$

 σ_{iM} $\beta_i = \sigma_M^2$

CALCULATION OF BETA

Period	Return on stock <i>A</i> , <i>R_A</i>	Return on market portfolio, <i>R_M</i>	Deviation of return on stock A from its mean $(R_A - \overline{R_A})$	Deviation of return on market portfolio from its mean $(R_M - \overline{R}_M)$	Product of the deviation, $(R_A - \overline{R_A})$ $(R_M - \overline{R_M})$	Square of the deviation of return on market portfolio from its mean $(R_M - \overline{R_M})^2$
1	10	12	0	3	0	9
2	15	14	5	5	25	25
3	18	13	8	4	32	16
4	14	10	4	1	4	1
5	16	9	6	0	0	0
6	16	13	6	4	24	16
7	18	14	8	5	40	25
8	4	7	-6	-2	12	4
9	- 9	1	-19	-8	152	64
10	14	12	4	3	12	9
11	15	-11	5	-20	-100	400
12	14	16	4	7	28	49
13	6	8	-4	-1	4	1
14	7	7	-3	-2	6	4
15	- 8	10	-18	1	-18	1

$$\Sigma \frac{R_A}{R_A} = 150 \qquad \Sigma \frac{R_M}{R_M} = 13$$
$$\frac{\Sigma R_M}{R_M} = 9$$

 $\frac{\sum (R_A - R_A)}{(R_M - R_M)} \frac{\sum (R_M - R_M)^2}{= 624}$

ESTIMATION ISSUES

• ESTIMATION PERIOD • A LONGER ESTIMATION PERIOD PROVIDES MORE **DATA BUT THE RISK PROFILE .. FIRM MAY CHANGE** • 5 YEARS • **RETURN INTERVAL** DAILY, WEEKLY, MONTHLY • MARKET INDEX **STANDARD PRACTICE ADJUSTING HISTORICAL BETA** • HISTORICAL ALIGNMENT ... CHANCE FACTOR • A COMPANY'S BETA MAY CHANGE OVER TIME

MERILL LYNCH ...

O.34 ... MARKET BETA

0.66 ... HISTORICAL BETA

BETAS BASED ON

FUNDAMENTAL INFORMATION

KEY FACTORS EMPLOYED ARE INDUSTRY AFFILIATION • CORPORATE GROWTH EARNINGS VARIABILITY • FINANCIAL LEVERAGE • SIZE

BETAS BASED ON

ACCOUNTING EARNINGS

REGRESS THE CHANGES IN COMPANY EARNINGS (ON A QUARTERLY OR ANNUAL BASIS) AGAINST CHANGES IN THE AGGREGATE EARNINGS OF ALL THE COMPANIES INCLUDED IN A MARKET INDEX.

LIMITATIONS

- ACCOUNTING EARNINGS .. GENERALLY SMOOTHED OUT .. RELATIVE .. VALUE OF THE COMPANY
 ACCOUNTING EARNINGS ... INFLUENCED BY NON -OPERATING FACTORS
- LESS FREQUENT MEASUREMENT

BETAS FROM CROSS SECTIONAL REGRESSIONS

1. ESTIMATE A CROSS - SECTIONAL REGRESSION RELATIONSHIP FOR PUBLICLY TRADED FIRMS: BETA = 0.6507 + 0.27 COEFFICIENT OF VARIATION IN OPERATING INCOME + 0.09 D/E + 0.54 EARNINGS - .00009 TOTAL ASSETS (MILLION \$)

2. PLUG THE CHARACTERISTICS OF THE PROJECT, DIVISION, OR UNLISTED COMPANY IN THE REGR'N REL'N TO ARRIVE AT AN ESTIMATE OF BETA

BETA = 0.6507 + 0.27 (1.85) + 0.09 (0.90) + 0.54 (0.12) - 0.00009 (150) = 1.2095

EMPIRICAL EVIDENCE

ON CAPM

1. SET UP THE SAMPLE DATA R_{it}, R_{Mt}, R_{ft}

2. ESTIMATE THE SECURITY CHARACTER--ISTIC LINES $R_{it} - R_{ft} = a_i + b_i (R_{Mt} - R_{ft}) + e_{it}$

3. ESTIMATE THE SECURITY MARKET LINE $\overline{R}_i = \gamma_0 + \gamma_1 \ b_i + e_i$, i = 1, ..., 75

EVIDENCE

IF CAPM HOLDS

• THE RELATION ... LINEAR .. TERMS LIKE b_i^2 .. NO EXPLANATORY POWER

•
$$\gamma_0 \simeq R_f$$

• $\gamma_1 \simeq R_M - L$

• NO OTHER FACTORS, SUCH AS COMPANY SIZE OR TOTAL VARIANCE, SHOULD AFFECT R_i

• THE MODEL SHOULD EXPLAIN A SIGNIFICANT PORTION OF VARIATION IN RETURNS AMONG SECURITIES

GENERAL FINDINGS

• THE RELATION ... APPEARS .. LINEAR

- $\gamma_0 > R_f$
- γ_1 < R_M R_f

 IN ADDITION TO BETA, SOME OTHER FACTORS, SUCH AS STANDARD DEVIATION OF RETURNS AND COMPANY SIZE, TOO HAVE A BEARING ON RETURN

• BETA DOES NOT EXPLAIN A VERY HIGH PERCENTAGE OF THE VARIANCE IN RETURN

CONCLUSIONS

PROBLEMS

STUDIES USE HISTORICAL RETURNS AS PROXIES FOR EXPECTATIONS
STUDIES USE A MARKET INDEX AS A PROXY

POPULARITY

- SOME OBJECTIVE ESTIMATE OF RISK PREMIUM .. BETTER THAN A COMPLETELY SUBJECTIVE ESTIMATE
- BASIC MESSAGE .. ACCEPTED BY ALL
 NO CONSENSUS ON ALTERNATIVE

ARBITRAGE - PRICING THEORY

RETURN GENERATING PROCESS $R_i = a_i + b_{i1} I_1 + b_{i2} I_2 \dots + b_{ij} I_1 + e_i$

EQUILIBRIUM RISK - RETURN RELATIONSHIP

 $\boldsymbol{E}(\boldsymbol{R}_{i}) = \lambda_{0} + \boldsymbol{b}_{i1}\lambda_{1} + \boldsymbol{b}_{i2}\lambda_{2} + \dots \boldsymbol{b}_{ij}\lambda_{j}$

 $\lambda_{j} = RISK PREMIUM FOR THE TYPE OF RISK ASSOCIATED WITH FACTOR j$