ESC-S201

Friction

Block A weighing 1000 N rests over block B which weighs 2000 N as shown in Fig. Block A is tied to wall with a horizontal string. If the coefficient of friction between blocks A and B is 0.25 and between B and floor is $1 / 3$, what should be the value of $P_{t_{0}}$ move the block (B), if
(a) P is horizontal.
(b) Pacts at 30° upwards to horizontal ?

Solution.

(a) When P is horizontal:

$$
\begin{gathered}
\dot{\Sigma V}=0 \rightarrow \\
N_{1}-1000=0 \quad \text { or } \quad N_{1}=1000 \mathrm{~N}
\end{gathered}
$$

(a)

(b)

Since F_{1} is limiting friction,

$$
\begin{aligned}
\frac{F_{1}}{N_{1}} & =\mu=0.25 \\
F_{1} & =0.25 N_{1}=0.25 \times 1000=250 \mathrm{~N} . \\
\Sigma H & =0 \\
F_{1}-T & =0 \\
T & =F_{1}=250 \mathrm{~N}
\end{aligned}
$$

Consider equilibrium of block B.

$$
\Sigma V=0 \quad \longrightarrow
$$

$$
N_{\mathrm{i} 2}-2000-N_{1}=0
$$

$$
N_{2}=2000+N_{1}=2000+1000=3000 \mathrm{~N}
$$

Since F_{2} is limiting friction,

$$
F_{2}=\mu N_{2}=\frac{1}{3} \times 3000=1000 \mathrm{~N}
$$

$$
\begin{aligned}
\Sigma H & =0 \rightarrow \\
P-F_{1}-F_{2} & =0 \\
P & =F_{1}+F_{2}=250+1000 \\
\mathbf{P} & =\mathbf{1 2 5 0} \mathbf{N} \text { Ans. }
\end{aligned}
$$

(b) When P is inclined:

Free body diagram for this case is shown in Fig. 5.5(c).
As in the previous case here also,

$$
N_{1}=1000 \mathrm{~N}
$$

1 $F_{1}=250 \mathrm{~N}$. Consider the equilibrium of block B.

$$
\Sigma V=0 \rightarrow
$$

$$
N_{2}-2000-N_{1}+P \sin 30^{\circ}=0
$$

$$
N_{2}+P \sin 30^{\circ}=2000+N_{1}
$$

$$
N_{2}+0.5 P=2000+1000
$$

$$
\therefore
$$

$$
N_{2}=3000-0.5 P
$$

From law of friction,

$$
\begin{gathered}
F_{2}=\frac{1}{3} N_{2}=\frac{1}{3}(3000-0.5 P) \\
=1000-\frac{0.5}{3} P \\
\sum H=0 \rightarrow \\
P \cos 30^{\circ}-F_{1}-F_{2}=0 \\
P \cos 30^{\circ}-250-\left(1000-\frac{0.5}{3} P\right)=0 \\
P\left(\cos 30^{\circ}+\frac{0.5}{3}\right)=1250
\end{gathered}
$$

$$
P=1210.43 \mathrm{~N} \quad \text { Ans. }
$$

Friction problem

5. Block A weighing 1000 N rests over block B which weighs 2000 N. Block A is tied to wall with a horizontal string. If the coefficient of friction between A and B is $1 / 4$ and between B and the floor is $1 / 3$, what should be the value of P to move the block B if a) P is horizontal?
b) P acts 30° upwards to horizontal?

Case: B

$$
P=1210.43 \mathrm{~N}
$$

Friction problem

a) Force equilibrium in horizontal direction.

$$
\mathrm{T}=\mathrm{F}_{\mathrm{s} 2}=250 \mathrm{~N}
$$

b) Force equilibrium in vertical direction.

$$
\begin{aligned}
\mathrm{N}_{\mathrm{B} / \mathrm{A}} & =\mathrm{W}_{\mathrm{A}} \\
\mathrm{~N}_{\mathrm{B} / \mathrm{A}} & =1000 \mathrm{~N} \\
\mathrm{~F}_{\mathrm{s} 2} & =0.25 \times 1000 \mathrm{~N} \\
& =250 \mathrm{~N} \\
\mathrm{~F}_{\mathrm{s} 2} & =\mu_{\mathrm{A} / \mathrm{B}} * \mathrm{~N}_{\mathrm{B} / \mathrm{A}}
\end{aligned}
$$

a) Force equilibrium in horizontal direction

$$
\begin{aligned}
P & =F_{s 1}+F_{s 2} \\
& =F_{s 1}+250 \mathrm{~N}
\end{aligned}
$$

b) Force equilibrium in vertical direction
$N_{B / \text { floor }}=N_{B / A}+W_{B}$
$\mathrm{N}_{\mathrm{B} / \text { floor }}=1000 \mathrm{~N}+2000 \mathrm{~N}$

$$
N_{B / \text { floor }}=3000 \mathrm{~N}
$$

$$
F_{s 1} \quad=\mu_{B / f l o o r} * N_{B / \text { Floor }}
$$

$$
=(1 / 3) * 3000 \mathrm{~N}
$$

$$
=1000 \mathrm{~N}
$$

$$
\mathrm{P}=\mathrm{F}_{\mathrm{s} 1}+250 \mathrm{~N}
$$

$$
=1000 \mathrm{~N}+250 \mathrm{~N}
$$

$\mathrm{P} \quad=1250 \mathrm{~N}$

$$
\begin{aligned}
& \mathrm{W}_{\mathrm{A}}=1000 \mathrm{~N} \\
& \mathrm{~W}_{\mathrm{B}}=2000 \mathrm{~N} \\
& \mu_{\mathrm{A} / \mathrm{B}}=0.25 \\
& \mu_{\mathrm{B} / \text { floor }}=1 / 3
\end{aligned}
$$

$$
F_{s 1}=\mu_{B / f l o o r} * N_{B / \text { Floor }}
$$

Friction problem

6. What should be the value of Θ in which will make the motion of 900 N block down the plane to impend? The coefficient of friction for all contact surfaces is $1 / 3$.

$$
\begin{aligned}
& \text { FBD- Block of } \\
& \text { weight } 900 \mathrm{~N} \\
& \hline \mathrm{~F}_{\mathrm{s} 1}=\mu * \mathrm{~N}_{1} \\
& \hline \mathrm{~F}_{2} \\
& \hline
\end{aligned}
$$

Answer
$\Theta=29.05$ degree

