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Gluconeogenesis

esis IS the process whereby precursors
pyruvate, glycerol, and amino acids
converted to glucose.

2quires all the glucose to be synthesized
m these non-carbohydrate precursors.

Mast precursors must enter the Krebs cycle at some
| \ point to be converted to oxaloacetate.

pate Is the starting material for
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Pyruvate is converted to oxaloacetate before being
changed to Phosphoenolpyruvate
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Wl Pas-aphosphorylating agent.



Pyruvate carboxylase requires biotin as a cofactor
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Gluconeogenesis is not just the reverse of
glycolysis
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Several steps are different so that control of one
pathway does not inactivate the other. However
many steps are the same. Three steps are different
from glycolysis.

1 Pyruvate to PEP

2 Fructose 1,6- bisphosphate to Fructose-6-
phosphate

3 Glucose 6- Phosphate to Glucose
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Biotin is an essential nutrient

-

There is hardly any deficiencies for biotin because It
IS abundant and bacteria in the large intestine also
make it.

However, deficiencies have been seen and are nearly

always linked to the consumption of raw eggs.

Raw eggs contain Avidin a protein that binds biotin
with a K, = 10-*> (that is one tight binding reaction!)

It I1s thought that Avidin protects eggs from bacterial
Invasion by binding bioitin and killing bacteria.
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PEP carboxykinase
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Acetyl-CoA regulates pyruvate carboxylase

aloacetate concentrations increase
Krebs cycle and acetyl-CoA Is a
ator of the carboxylase. However

nen ATF ind NADH concentrations are high and
! * ebs cycle is inhibited, oxaloacetate goes to
\
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Transport between the mitochondria and
the cytosol

yXaloacetate occurs in the mito-

it In humans, while in mice, it is only
1e cytosol. In rabbits, it is found in the

ed. PEP transport systems are seen in the
bt oxaloacetate can not be trans-
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Hydrolytic reactions bypass PFK and
Hexokinase

of fructose-1,6-phosphate and
hate are separate enzymes from
-6-phosphatase iIs only found in
ney. The liver is the primary organ
enesis.

D* + 2ADP + 2P| ————p
yruvate +2NADH + 4H* + 2ATP + 2H,0
JADH + 4H" + 4ATP + 2GTP + 6H,0
» +R+ 2GDP + 4Pi
\——>2ADP + 2GTP~4Pi
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of gluconeogenic enzyme activity
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Low blood [glucose]

'

Increased glucagon secretion

:

Increased [CAMP]

'

Increased enzyme phosphorylation

'

Activation of FBPase-2 and inactivation of PFK-2

'

Decreased [F2,6P]

'

Inhibition of PFK and activation of FBPase

'

Increased gluconeogenesis
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Hormonal control of glycoly3|s and gluconeogenesis
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The glyoxylate pathway

the ability to convert acetyl-CoAto
y without producing reducing equilivents
)ne in the glyoxyzome, separate from the
allows a replenishment of oxaloacetate.

| lyase - cleaves isocitrate into succinate and
'oxylate. The succinate goes to the mitochondria

-

\ syhth se makes malate from glyoxylate and Acetyl-

“'\"\
an go directly to carbohydrate synthesis.
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| Glycogen Storage

) is a D-glucose polymer
inkages
ed branches every 8-14
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Breakdown or Glycogenolysis

) phosphorylase

(n residues) (n-1 residues)
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Outer glycogen chains
(after phosphorylase action)

glycogen debranching
enzyme
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Glycogen Synthesis
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Glycogen Synthase
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