Frequency domain analysis and Fourier Transform

How to Represent Signals?

Option 1: Taylor series represents any function using polynomials.

$$f(x) = f(a) + f'(a)(x - a) + \frac{f''(a)}{2!}$$
$$(x - a)^2 + \frac{f^{(3)}(a)}{3!}(x - a)^3 + \dots + \frac{f^{(n)}(a)}{n!}(x - a)^n + \dots$$

Jean Baptiste Joseph Fourier (1768-1830)

- Had crazy idea (1807):
- **Any** periodic function can be rewritten as a weighted sum of Sines and Cosines of different frequencies.
- Don't believe it?
 - Neither did Lagrange, Laplace, Poisson and other big wigs
 - Not translated into English until 1878!
- But it's true!
 - called Fourier Series
 - Possibly the greatest tool used in Engineering

Fourier Transform

• We want to understand the frequency ω of our signal. So, let's reparametrize the signal by ω instead of *x*:

- For every ω from 0 to inf, $F(\omega)$ holds the amplitude A and phase ϕ of the corresponding sine $A\sin(\omega x + \phi)$
 - How can F hold both? Complex number trick!

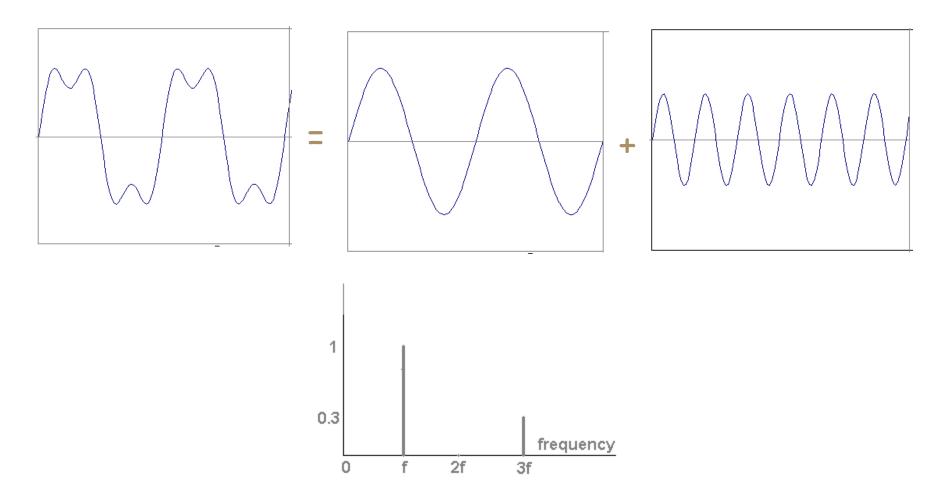
$$F(\omega) = R(\omega) + iI(\omega)$$

$$A = \pm \sqrt{R(\omega)^2 + I(\omega)^2}$$

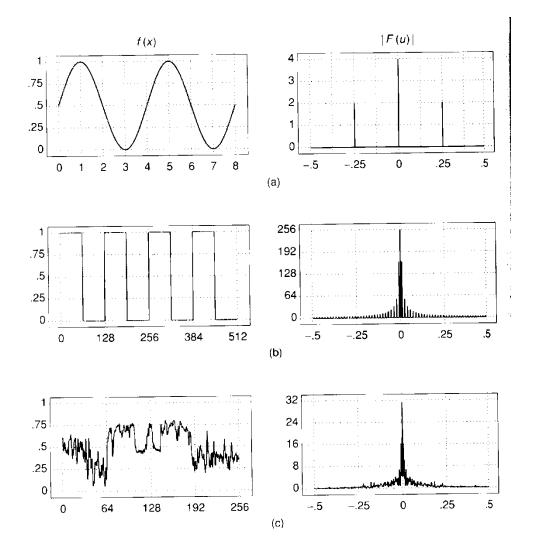
$$\phi = \tan^{-1} \frac{I(\omega)}{R(\omega)}$$

Frequency Spectra

• example : $g(t) = \sin(2pift) + (1/3)\sin(2pi(3f)t)$



Frequency Spectra



Fourier Transform

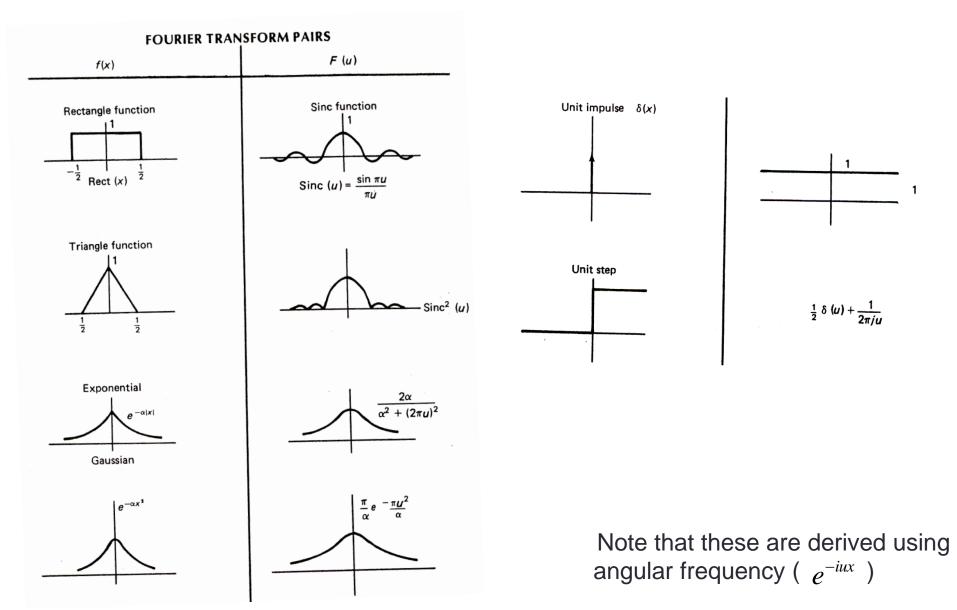
One of the most useful features of the Fourier transform (and Fourier series) is the simple "inverse" Fourier transform.

$$X(j\omega) = \int_{-\infty}^{\infty} x(t)e^{-j\omega t}dt$$
$$x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(j\omega)e^{j\omega t}d\omega$$

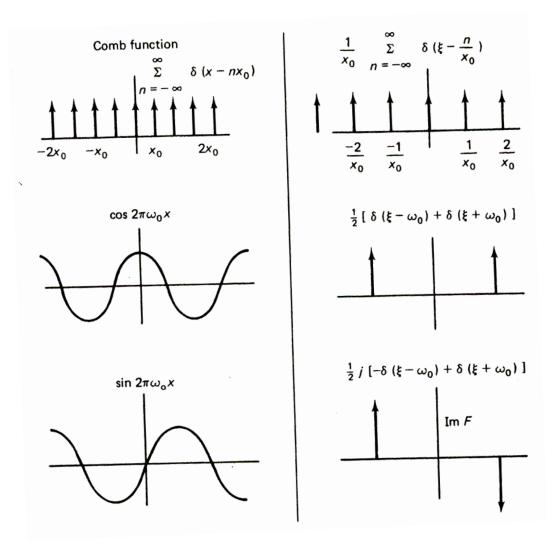
(Fourier transform)

("inverse" Fourier transform)

Fourier Transform Pairs (I)



Fourier Transform Pairs (I)



Note that these are derived using angular frequency (e^{-iux})

Fourier Transform and Convolution

Let
$$g = f * h$$

Then $G(u) = \int_{-\infty}^{\infty} g(x)e^{-i2\pi ux} dx$
 $= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(\tau)h(x-\tau)e^{-i2\pi ux} d\tau dx$
 $= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \left[f(\tau)e^{-i2\pi u\tau} d\tau\right]h(x-\tau)e^{-i2\pi u(x-\tau)} dx$
 $= \int_{-\infty}^{\infty} \left[f(\tau)e^{-i2\pi u\tau} d\tau\right]\int_{-\infty}^{\infty} \left[h(x')e^{-i2\pi ux'} dx'\right]$
 $= F(u)H(u)$

Convolution in spatial domain

↔ Multiplication in frequency domain

Properties of Fourier Transform

Spatial Domain (x) $c_1 f(x) + c_2 g(x)$ Linearity f(ax)Scaling $f(x-x_0)$ Shifting F(x)Symmetry $f^*(x)$ Conjugation f(x) * g(x)**Convolution** $\underline{d^n f(x)}$ Differentiation

Frequency Domain (u) $c_1F(u)+c_2G(u)$ $\frac{1}{|a|}F\left(\frac{u}{a}\right)$ $e^{-i2\pi u x_0}F(u)$ f(-u) $F^*(-u)$ F(u)G(u) $(i2\pi u)^n F(u)$

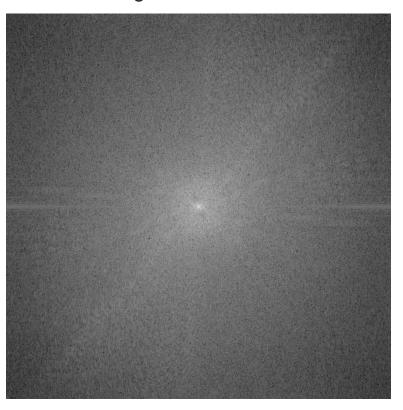
Note that these are derived using frequency ($e^{-i2\pi ux}$)

Properties of Fourier Transform

Parseval's theorem: $ \int_{-\infty}^{\infty} f(x) ^2 dx = \int_{-\infty}^{\infty} F(\xi) ^2 d\xi $ $ \int_{-\infty}^{\infty} f(x)g^*(x) dx = \int_{-\infty}^{\infty} F(\xi)G^*(\xi) d\xi $ $ f(x) F(\xi) $	
Imaginary (I)	RO,IE
RE,IO	R
RE,IE	I
RE	RE
RO	IO
IE	IE
IO	RO
Complex even (CE)	CE
CO	CO

Image Processing in the Fourier Domain

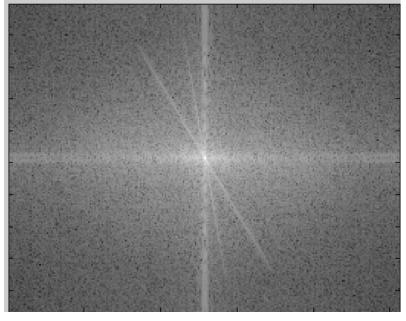
Magnitude of the FT



Does not look anything like what we have seen

Image Processing in the Fourier Domain

Magnitude of the FT



Does not look anything like what we have seen

THANK YOU