SIGNALS \& SYSTEMS Z-Transform

Comparison of Laplace ad Z-Transform

- Fourier transform plays a key role in analyzing and representing discrete-time signals and systems, but it is not applicable for all signals.
- Continuous systems: Laplace transform is a generalization of the Fourier transform.
- Discrete systems : Z-transform, generalization of DTFT, converges for a broader class of signals.
- In Laplace Transform we evaluate the complex sinusoidal representation of a continuous signal.
- In the Z-Transform, it is on the complex sinusoidal representation of a discrete-time signal.

Relation between DTFT and Z-Transform

- The DTFT provides a frequency-domain representation of discretetime signals and LTI discrete-time systems
- Because of the convergence condition, in many cases, the DTFT of a sequence may not exist, thereby making it impossible to make use of such frequency-domain characterization in these cases
- A generalization of the DTFT defined by $X\left(e^{j \omega}\right)=\sum_{n=-\infty}^{\infty} x[n] e^{-j \omega n}$ leads to the Z-transform
- Z-transform may exist for many sequences for which the DTFT does not exist.
- Use of Z-transform permits simple algebraic manipulations

Introduction

- The z-transform is the discrete-time counterpart of the Laplace transform.
- It can be used to assess the characteristic of discrete-time systems in terms of its impulse response and frequency response.
- The z-transform can be used determine the solution to the difference equation.

Definition of \boldsymbol{Z}-Transform

- For a given sequence $x[n]$, its z-transform $X(z)$ is defined as

$$
\begin{aligned}
& X(z)=\sum_{n=-\infty}^{\infty} x(n) z^{-n} \\
& x(n)=\frac{1}{2 \pi j} \oint X(z) z^{n-1} d z
\end{aligned}
$$

Z-Transform Example

A signal is defined as

$$
\begin{aligned}
x(n) & =a^{n} & & n \geq 0 \\
& =0 & & \text { elsewhere }
\end{aligned}
$$

$x(z)=\sum_{n=1}^{\infty}(a)^{n} z^{-n}=1+a^{1} z^{-1}+a^{2} z^{-2}+a^{3} z^{-3}+a^{4} z^{-4}+\ldots .$.
(Open forin

$$
\begin{aligned}
& X(z)=\frac{1}{1-a z^{-1}}=\frac{z}{z-a} \\
& \quad(\text { Close form) }
\end{aligned}
$$

From the close form solution, there is a pole where $z=a$ and a zero.

Solution for Difference Equation and Transfer Function

- The z-transform can be used to determine the solution to difference equation. Given that the input-output relationship of a linear timeinvariant system is as follows

$$
y(n)=a(1) y(n-1)+a(2) y(n-2)=b(0) x(n)+b(1) x(n-1)+b(2) x(n-2)
$$

- The z-transform is

$$
\begin{gathered}
Y(z)+a(1) Y(z) z^{-1}+a(2) Y(z) z^{-2}=b(0) X(z)+b(1) X(z) z^{-1}+b(2) X(z) z^{-2} \\
H(z)=\frac{Y(z)}{X(z)}=\left[\frac{b(0)+b(1) z^{-1}+b(2) z^{-2}}{1+a(1)) z^{-1}+a(2) z^{-2}}\right]
\end{gathered}
$$

where $H(z)$ is the transfer function.

General Form of the Transfer Function

- For more general case, the transfer function is in the form

$$
H(z)=\frac{\sum_{n=0}^{N} b(n) z^{-n}}{\sum_{n=0}^{N} a(n) z^{-n}}
$$

where N is the polynomial order. The transfer function when factorized in term of the roots is

$$
H(z)=\frac{\prod_{n=0}^{N}\left(1-\beta(n) z^{-n}\right)}{\prod_{n=0}^{N}\left(1-\alpha(n) z^{-n}\right)}
$$

Inverse Z-Transform

- The system impulse response $h(n)$ is obtained from $H(z)$ by taking the inverse z-transform. If the following transfer function is used as example

$$
\begin{aligned}
H(z) & =\frac{Y(z)}{X(z)}=\frac{1}{1+a(1) z^{-1}+a(2) z^{-2}} \\
& =\frac{1}{\left(1-\alpha(1) z^{-1}\right)\left(1-\alpha(2) z^{-1}\right)}
\end{aligned}
$$

- The application of the partial fraction expansion results in

$$
H(z)=\frac{1}{\left(1-\alpha(1) z^{-1}\right)\left(1-\alpha(2) z^{-1}\right)}=\frac{A_{0}}{1-\alpha(1) z^{-1}}+\frac{A_{1}}{1-\alpha(2) z^{-1}}
$$

Elementary signals

Unit step function $\quad x(n)=1 \quad n \geq 0$
$X(z)=\sum_{n=0}^{\infty} 1 z^{-n}=1+z^{-1}+z^{-2}+\ldots \ldots \ldots \ldots=\frac{1}{1-z^{-1}}=\frac{z}{z-1} ;|z|>1$
Power function $\quad x(n)=a^{n} \quad n \geq 0$
$X(z)=\sum_{n=0}^{\infty} a^{n} z^{-n}=1+a z^{-1}+a^{2} z^{-2}+\ldots \ldots \ldots .=\frac{1}{1-a z^{-1}}=\frac{z}{z-a} ; \quad|z|>|a|$
Ramp function $\quad x(n)=n \quad n \geq 0$

$$
X(z)=\sum_{n=0}^{\infty} n z^{-n}=0+z^{-1}+2 z^{-2}+3 z^{-3} \ldots \ldots \ldots .=\frac{z^{-1}}{\left(1-z^{-1}\right)^{2}}=\frac{z}{(z-1)^{2}} ; \quad|z|>1
$$

The values of z for which $X(z)$ is finite are known as region of convergence (ROC)

Try other signals: impulse function,

Significance of ROC

For causal sequence $x(n)=a^{n} \quad$ for $n \geq 0$ and $0 \quad$ for $n<0$
$X(z)=\sum_{n=0}^{\infty} a^{n} z^{-n}=\sum_{n=0}^{\infty}\left(a z^{-1}\right)^{n}=\frac{1}{1-a z^{-1}}=\frac{z}{z-a} ; \quad|z|>|a|$
For Anti causal $x(n)=0$ for $n \geq 0$ and $-a^{n}$ for $n<0$
sequence $X(z)=\sum_{n=-\infty}^{-1}-a^{n} z^{-n}=-\sum_{n=-\infty}^{-1}\left(a^{-1} z\right)^{-n}=\frac{z}{z-a} ;|z|<|a|$

The two sequences have same $X(z)$ but their ROC is different. Without ROC we can not uniquely determine the sequence $x(n)$. Generally, for causal sequence, the ROC is exterior of the circle having radius a and for anti causal sequence it is interior of the circle.
Find $X(z)$ and ROC for $\quad x(n)=\alpha^{n} u(n)+\beta^{n} u(-n-1)$

Answer

$$
X(z)=\frac{\beta-\alpha}{\alpha+\beta-z-\alpha \beta z^{-1}} \quad R O C:|\alpha|<|z|<|\beta|
$$

Z-transform pairs

$$
\begin{aligned}
& \delta[n] \leftrightarrow 1, \quad \text { ROC }: \text { all } z \\
& u[n] \leftrightarrow \frac{1}{1-z^{-1}}, \quad \text { ROC }:|z|>1 \\
& -u[-n-1] \leftrightarrow \frac{1}{1-z^{-1}}, \quad \text { ROC }:|z|<1 \\
& \delta[n-m] \leftrightarrow z^{-m}, \\
& R O C: \text { all } z \text { except } 0(\text { if } m>0) \text { or } \infty(\text { if } m<0)
\end{aligned}
$$

Z-transform pairs

$$
\begin{gathered}
a^{n} u[n] \leftrightarrow \frac{1}{1-a z^{-1}}, \quad \text { ROC }:|z|>|a| \\
-a^{n} u[-n-1] \leftrightarrow \frac{1}{1-a z^{-1}}, \quad \text { ROC }:|z|<|a| \\
n a^{n} u[n] \leftrightarrow \frac{a z^{-1}}{\left(1-a z^{-1}\right)^{2}}, \quad \text { ROC }:|z|>|a| \\
-n a^{n} u[-n-1] \leftrightarrow \frac{a z^{-1}}{\left(1-a z^{-1}\right)^{2}}, \quad \text { ROC }:|z|<|a|
\end{gathered}
$$

Z-transform pairs

$\left[\cos w_{0} n\right] u[n] \leftrightarrow \frac{1-\left[\cos w_{0}\right] z^{-1}}{1-2\left[\cos w_{0}\right] z^{-1}+z^{-2}}, \quad R O C \quad:|z|>1$

$$
\begin{gathered}
{\left[\cos w_{0} n\right] u[n]=\frac{1}{2}\left(e^{j w_{0} n}+e^{-j w_{0} n}\right) u[n]} \\
\frac{1}{2}\left(\frac{1}{1-e^{j w_{0}} z^{-1}}+\frac{1}{1-e^{-j w_{0}} z^{-1}}\right)
\end{gathered}
$$

$\left[\sin w_{0} n\right] u[n] \leftrightarrow \frac{\left[\sin w_{0}\right] z^{-1}}{1-2\left[\cos w_{0}\right] z^{-1}+z^{-2}}, \quad R O C \quad:|z|>1$

Zero and pole

- The Z-transform is most useful when the infinite sum can be expressed in closed form, usually a ratio of polynomials in \mathbf{z} (or Z-1 ${ }^{1}$.

$$
X(z)=\frac{P(z)}{Q(z)}
$$

- Zero: The value of z for which

$$
X(z)=0
$$

- Pole: The value of z for which

$$
X(z)=\infty
$$

Convolution

- Convolution:

$$
x[n] * h[n]=\sum_{k=-\infty}^{\infty} x[k] h[n-k] \Leftrightarrow X(z) H(z)
$$

Proof: $\quad \mathcal{Z}[x[n] * h[n]]=\mathbb{Z}\left[\sum_{k=-\infty}^{\infty} x[k] h[n-k]\right]=\sum_{n=-\infty}^{\infty}\left[\sum_{k=-\infty}^{\infty} x[k] h[n-k]\right] z^{-n}$

$$
=\sum_{k=-\infty}^{\infty} x[k]\left[\sum_{n=-\infty}^{\infty} h[n-k] z^{-n}\right]
$$

Change of index on the second sum:

$$
m=n-k
$$

$$
\begin{aligned}
z[x[n] * h[n]] & =\sum_{k=-\infty}^{\infty} x[k]\left[\sum_{m=-\infty}^{\infty} h[m] z^{-(m+i)}\right]=\left[\sum_{k=-\infty}^{\infty} x[k] z^{-k)}\right]\left[\sum_{m=-\infty}^{\infty} h[m] z^{-m}\right] \\
& =X(z) H(z)
\end{aligned}
$$

The ROC is at least the intersection of the ROCs of $x[n]$ and $h[n]$, but can be a larger region if there is pole/zero cancellation.

- The system transfer function is completely analogous to the CT case:

$$
h[n] \quad \Leftrightarrow \quad H(z)=\sum_{n=-\infty}^{\infty} h[n] z^{-n}
$$

- Causality: $\quad h[n]=0 \quad n \leq 0$
${ }_{19}$ Implies the ROC must be the exterior of a circle and include $z=\infty$.

Initial-Value and Final-Value Theorems (One-Sided ZT)

- Initial Value Theorem: $\quad x[0]=\lim _{z \rightarrow \infty} X(z)$

Proof: $\quad \lim _{z \rightarrow \infty} X(z)=\lim _{z \rightarrow \infty} \sum_{n=0}^{\infty} x[n] z^{-n}=\lim _{z \rightarrow \infty} x[0]+x[1] z^{-1}+\ldots=x[0]$

- Final Value Theorem:

$$
\lim _{n \rightarrow \infty} x[n]=\lim _{z \rightarrow 1}(z-1) X(z)
$$

- Example:

$$
\begin{aligned}
& X(z)=\frac{3 z^{2}-2 z+4}{z^{3}-2 z^{2}+1.5 z-0.5}=\frac{3 z^{2}-2 z+4}{(z-1)\left(z^{2}-z+0.5\right)} \\
& \lim _{n \rightarrow \infty} x[n]=\left.[(z-1) X(z)]\right|_{z=1}=\left.\frac{3 z^{2}-2 z+4}{z^{2}-z+0.5}\right|_{z=1}=\frac{5}{.5}=10
\end{aligned}
$$

Table Common Z-transform Pairs

SOME COMMON z-TRANSFORM PAIRS

Sequence	Transform	ROC
1. $\delta[n]$	1	All z
2. $u[n]$	$\frac{1}{1-z^{-1}}$	$\|z\|>1$
3. $-u[-n-1]$	$\frac{1}{1-z^{-1}}$	$\|z\|<1$
4. $\delta[n-m]$	z^{-m}	All z except O (if $m>0$) or ∞ (if $m<0$)
5. $a^{n} u[n]$	$\frac{1}{1-a z^{-1}}$	$\|z\|>\|a\|$
6. $-a^{n} u[-n-1]$	$\frac{1}{1-a z^{-1}}$	$\|z\|<\|a\|$
7. $n a^{\prime \prime} u[n]$	$\frac{a z^{-1}}{\left(1-a z^{-1}\right)^{2}}$	$\|z\|>\|a\|$
8. $-n a^{n} u[-n-1]$	$\frac{a z^{-1}}{\left(1-a z^{-1}\right)^{2}}$	$\|z\|<\|a\|$
9. $\cos \left(\omega_{0} n\right) u[n]$	$\frac{1-\cos \left(\omega_{0}\right) z^{-1}}{1-2 \cos \left(\omega_{0}\right) z^{-1}+z^{-2}}$	$\|z\|>1$
10. $\sin \left(\omega_{0} n\right) u[n]$	$\frac{\sin \left(\omega_{0}\right) z^{-1}}{1-2 \cos \left(\omega_{0}\right) z^{-1}+z^{-2}}$	$\|z\|>1$
11. $r^{n} \cos \left(\omega_{0} n\right) u[n]$	$\frac{1-r \cos \left(\omega_{0}\right) z^{-1}}{1-2 r \cos \left(\omega_{0}\right) z^{-1}+r^{2} z^{-2}}$	$\|z\|>r$
12. $r^{n} \sin \left(\omega_{0} n\right) u[n]$	$\frac{r \sin \left(\omega_{0}\right) z^{-1}}{1-2 r \cos \left(\omega_{0}\right) z^{-1}+r^{2} z^{-2}}$	$\|z\|>r$
13. $\begin{cases}a^{n}, & 0 \leq n \leq N-1, \\ \mathrm{O}, & \text { otherwise }\end{cases}$	$\frac{1-a^{N} z^{-N}}{1-a z^{-1}}$	$\|z\|>0$

Properties of Z-Transform

Sequence	Transform	ROC
$x[n]$	$X(z)$	R_{x}
$x_{1}[n]$	$X_{1}(z)$	$R_{x_{1}}$
$x_{2}[n]$	$X_{2}(z)$	$R_{x_{2}}$
$a x_{1}[n]+b x_{2}[n]$	$a X_{1}(z)+b X_{2}(z)$	Contains $R_{x_{1}} \cap R_{x_{2}}$
$x\left[n-n_{0}\right]$	$z^{-n_{0}} X(z)$	R_{x}, except for the possible addition or deletion of the origin or ∞
$z_{0}^{n} x[n]$	$X\left(z / z_{0}\right)$	$\left\|z_{0}\right\| R_{x}$
$n x[n]$	$-z \frac{d X(z)}{d z}$	R_{x}
$x^{*}[n]$	$X^{*}\left(z^{\frac{s}{*}}\right)^{\prime}$	R_{x}
$\mathcal{R e}\{x[n]\}$	$\frac{1}{2}\left[X(z)+X^{*}\left(z^{*}\right)\right]$	Contains R_{x}
$\operatorname{Im}\{x[n]\}$	$\frac{1}{2 j}\left[X(z)-X^{*}\left(z^{*}\right)\right]$	Contains R_{x}
$x^{*}[-n]$	$X^{*}\left(1 / z^{*}\right)$	$1 / R_{x}$
$x_{1}[n] * x_{2}[n]$	$X_{1}(z) X_{2}(z)$	Contains $R_{x_{1}} \cap R_{x_{2}}$

