SIGNALS AND SYSTEMS

Z, -Transtform



Introduction

= The z-transform 1s the discrete-time counterpart of the Laplace
transform.

= It can be used to assess the characteristic of discrete-time
systems 1 terms of its mmpulse response and frequency response.

= The --transform can be used determine the solution to the
difference equation.



Definition of Z-Transform

= For a given sequence x|n], its --transform X(z) 1s

detined as

oo

X{z)= ) w(m)z "

fi = —00

x(n) = —i}X(z)z” ‘dz



Inverse Z Transform

* Recall the definition of the inverse Laplace transform via contour integration:

1 O+ jo 1
t - X Std - X Std
x(t) > GJJOO (s} s 2@_{3 (s)e™ ds
* The inverse Z-transform follows from this:
_ 1 n—1
x[n] = 2—@_1:)((2)2 dz

Evaluation of this integral is beyond the scope of this course. Instead, as with the Laplace transform, we will restrict our interest
in the inverse transform to rational forms (ratio of polynomials). We will see shortly that this is convenient since linear constant-
coefficient difference equations can be converted to polynomials using the Z-transform.

* As with the Laplace transform, there are two common approaches:
= Long Division
= Partial Fractions Expansion

 Expansion by long division Is also known as the power series expansion approach and can be easily demonstrated by an
example.



Long Division

* Consider: 2

Solution: 2P +2z+4

3 5 4,2 1 z ' +0z?2-3z7-4z"*
Z o tezH )Z B Z3+2Z+4>22—1

z2 + 2+ 477!

-3 -4z""

z ' +0z? -3z -3 — 6z *-12z""°

— 4z "+ 6z +12z2°

B — 4z - 8z7-16z""
-3-4z

-3 — 6z 2 —-12z73 6z > +20z°+16z*

—4z'+ 6z +12z7°

X(z)=z"4+0z7% =327 —4z"%+ ..

= x[n]=00[n]+16[n-1]-306[n—-3]—-40[n—-4]+ ..
|



Inverse Z-Transform Using Partial Fractions

 The partial fractions approach is preferred if we want a closed-form solution rather than the numerical solution
long division provides. 3
z- +1

X (z) =

2
z3 —z? -z -2

In this example, the order of the numerator and denominator are the same. For this case, we can use a trick of
factoring X(z)/z:

» Example:

A(z) =2 -2z —2-2=(z-2)z+ 0.5+ j0.866 )(z+ 0.5— j0.866 )

X (z2) _ %o o S n ¢ 4 b3
z z z+ 0.5+ j0.866 z+0.5- j0.866 z—2

Co = X (2) (Z)} :1—: -0.5
L Z z=0 o 2

¢, = X (2) (z+ 0.5+ j0.866 )} = 0.429 + j0.0825
. Z z2=-0.5- j0.866

c, = X(Z)(z—z)} = 0.643
L Z z=2




Inverse Z-Transform (Cont.

We can compute the inverse using our table of common transforms:
c,z c,z Cc,Zz

+ +
z+ 0.5+ j0.866 z+0.5- j0.866 z—2
€ c, €3
c, + . — + . — —
1+0.5+ j0.866 z 1+0.5- j0.866 z 1-2z
x[n]=c,0[n]+c,(-0.5- j0.866 )"u[n]+c,(-0.5+ j0.866 )"u[n]+ c,2"u[n]
The exponential terms can be converted to a single cosine using a magnitude/phase conversion:

7] = J(0.5)> +(0.866 )* =1

X(z)=c, +

Zp,=7x+tan 068656 = 43” rad
e[ = 4/(0.429 ) + (0.0825 )* = 0.437
_, 0.0825

=0.19 rad (10.89 °)

Zc, =
0.429

x[n]=c,0[n]+c,(-0.5-,0.866 ) u[n]+c,(-0.5+ j0.866 )" u[n]+c,2"u[n]
c,0[n]+ 2|cl||p1|cos( Lpmn+ ZLc))+cy;(2) uln]

~0.55[n]+ 0.874 cos( 4T”n +0.19)+0.643 (2)"u[n]



Transfer Functions

* In addition to our normal transfer function components, x[n]

such as summation and multiplication, we use one

important additional component: delay. x[n] - yln]= x[n—1]

* This is often denoted by its Z-transform equivalent. Y(z) = 27 X (2)

* We can illustrate this with an example (assume initial conditions are zero):
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Transfer Function Example

* Redraw using Z-transform:

I
[t
+

 Write equations for the behavior at

X(z) +/_\ zQ(2) | Q(2) +//_\ z(H(z) | Ox(z) +

¥(z)

0

each of the summation nodes:

\V

20 ,(z) = Q,(z) - 3Y(z)
Y(z)=20,(2)+ Q,(2)
* Three equations and three unknowns: solve the first for Q,(z) and substitute into the other two equations.
0, (z)=z"'0,(z)+z ' X (2)
20,(2) = [0, (2)+ 2 ' X (9)]- 37 (2)
0,(2)=270,(z)+z X (2)-3z"'Y(z)
1

20,(2) = 0,(2) + X (2) ( I

0,(2) = |z "X (2) - 3277 (2)]

Y(z) = 22_1[1_1 - [Z_ZX(Z)— 3Z_1Y(Z)]:|+ 227X (2) + 1_1 - [Z_ZX(Z)— 3Z_1Y(Z)]
Simplify..

H(Z)=Y(Z)— 2z +1

X(Z)_22+3Z+5



The Properties of ROC
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Figure : The relationship between the ROC and the time extent of a signal.
(a) A right-sided signal has an ROC of the form |z| > r,.
(b) A left-sided signal has an ROC of the form |z| < r.
(c) A two-sided signal has an ROC of the form r, < |z| < r.
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Figure : ROCs .
(a) Two-sided signal x[n] has ROC in between the poles.
(b) Right-sided signal y[n] has ROC outside of the circle containing the pole of largest magnitude.
(c) Left-sided signal w]n] has ROC inside the circle containing the pole of smallest magnitude.



MTaking a path analogous to that used the development of the
M Laplace transform, the g transform of the causal DT signal is

Aa"u[n],|a|>0

X(z)= AZOK ulnf™ _AZOt” n_AZ(j)

n——0a0

and the series converges if || > |a].

This

defines the ROC as the exterior of a circle in

the 7 plane centered at the origin, of radius|a]|.

M The g transform is

21>

@

Imt(z)

e

[z]
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= Re(z)
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M By similar reasoning, the g transform and region of convergence of the anti-causal signal

below, are
Aa "u|l-n],|a|>0 e
[Z]
_1 1
X(z)= = L < %
l—aZ A — |0(| ROC

= Re(z)

Anti-Causal




Problem and Solution

The z-transform F(2) of the function f(nT) = a"' is

L B
& £
(C) p—— (D) P

Option (A) is correct.
We have f{nT) =a"
Taking z-transform we get

= e R - S0 i

A=—1 n=i




Option (C) is correct.
Given z transform
=)

C@ =4 =y

Applying final value theorem
limlf(n} = 1111']| (z— 1) f(2)

i (z— 1) F (@) = lim (2= D525 = tim? {iﬂ i—[]?? -
B Iimz‘Jz‘“ (z*—1) (z— 1)
= 1 4z7%(z—1)°
=) @) () (1)
21 4 (7 — 1}2

= !
limZ-(z+1) (7 +1) =1



