PHARMACODYNAMICS- PRINCIPLES AND MECHANISMS OF DRUG ACTION

Principles of Drug Action

Drugs (except those gene based) do not impart new functions to any system, organ or cell; they only alter the pace of ongoing activity.

Stimulation	
Depression	
Dual action	
Irritation	
Replacement	
Antimicrobial effects	
Modification of immune status	

Principles of Drug Action

1. Stimulation:

- ✓ Increase in the activity of specialized cells is called stimulation
- e.g. 1. Adrenaline stimulates heart.
 - 2. Pilocarpine stimulates salivary glands.
 - 3. Morphine stimulates vagus and CTZ
 - 4. Picrotoxin stimulates CNS
- However, excessive stimulation is often followed by depression of that function
- e.g. 1. High dose of picrotoxin, produce convulsions followed by coma and respiratory depression.
 - High dose of morphine depress the respiratory and cough centers

Pi

Principles of Drug Action

2. Depression:

- ✓ Decrease in the activity of specialized cells is called depression
- ✓ e.g. 1.Quinidine depresses myocardium.
 - 2. Barbiturates depress CNS
 - 3. Benzodiazepam depress CNS

3. Dual action:

- ✓ Certain drugs stimulate one type of cells but depress the other
- e.g. 1. Acetylcholine stimulates intestinal smooth muscle but depresses SA node in heart.
 - 2. Morphine stimulates vomiting centre and depress respiratory centre

Principles of Drug Action

4. Irritation

- ✓ The term irritation indicates that a drug produce adverse effects on the growth, nutrition and morphology of living tissues
- ✓ Irritation is nonspecific phenomenon that can occurs in all tissues
- ✓ It produces changes in the cellular structure and can produce inflammation, corrosion and necrosis of cell
- ✓ The cellular changes produced are

Astringent effect

Dehydration

Cytotoxic action

Principles of Drug Action

5. Replacement:

✓ This refers to the use of natural metabolites, hormones or their congeners in deficiency states.

- e.g. 1. Levodopa in parkinsonism
 - 2. Insulin in diabetes mellitus
 - 3. Iron in anaemia.
 - 4. Vitamins in vitamin deficiency
 - 5. Calcium in osteoporosis

Principles of

Principles of Drug Action

6. Antimicrobial effects

- Drugs are used for prevention, arrest and eradication of infections they act specifically on the causative organisms
- e.g. Antibiotics like penicillin, chloroquine, zidovudine, cyclophosphamide etc.

7. Modification of immune status

✓ Vaccines, sera and certain other agents (Levamisole, corticosteroids) act by altering (enhancing or depressing) tl
immune status

Principles of Drug Action

Process	Drug	Site
✓ Stimulation ✓	Adrenaline	Heart
✓ Depression ✓	Morphine, Barbiturate, Alcohol	CNS
✓ Replacement	Hormones	Endocrine System
✓Irritation ✓	Bitters, Purgatives	GIT
✓ Cytotoxic -	Antimicrobials Anti cancer drugs	Parasitic cells

Mechanism of Drug action

The mechanism of drug action has been classified into

- 1. Non receptor mediated
- 2. Receptor mediated

Non receptor mediated is further classified into

- a. Physical action
- b. Chemical action
- c. Action through Enzymes
- d. Action through Ion channels
- e. Action through Transporters

In receptor mediated Drug action

a. Receptors

Non Receptor Mediated-Physical Action

Osmolality -

Osmotic diuretics like mannitol

Adsorption

Kaolin and activated charcoal used in diarrhoea

Soothing-demulcent /

• Syrups as pharyngeal demulcents used in cough

Radioactivity ~

131I in treatment of hyperthyroidism

Non Receptor Mediated-Chemical action

b. Chemical action:

- Antacids used in treatment of peptic ulcer
- Pot. Permanganate as oxidizing property
- Chelating agents (EDTA)as chelation of heavy metals.

c. Enzymes

- ✓ Almost all biological reactions are carried out under catalytic influence of enzymes; hence, enzymes are a very important target of drug action.
- ✓Drugs can either increase or decrease the rate of enzymatically mediated reactions.

Non Receptor Mediated- Enzymes

Enzymes (Contd..)

- 1. Enzyme stimulation:
- ✓ Several enzymes are stimulated through receptors and second messengers.
- e.g. Adrenaline stimulates adenylyl cyclase

2. Enzyme inhibition:

- ✓ Occurs commonly with drugs and is either nonspecific
- e.g. 1. Inhibition of cholinesterase by physostigmine
 - 2. Inhibition of carbonic anhydrase by acetazolamide

Non Receptor Mediated- Ion channels

Drugs	Ion channel	
Quinidine blocks	Myocardial Na+ channels.	
Nifedipine blocks	Ca+ channels.	
Nicorandil opens	ATP-sensitive K+ channels.	
Sulfonylurea inhibit	K+ channels.	
Amiloride inhibits	Renal epithelialNa+ channels	
Phenytoin inhibits	Na+ channel.	
Ethosuximide Block	T-type of Ca2+ channels	
Local Anaesthetics inhibits	Na+ channel.	

Non Receptor Mediated- Transporter TRANSPORTERS Substrate Inhibitor