

CLUSTAL W Tool (Practical) Value added Course Lecture 8

Er. Brijendra Singh

Assistant Professor, Department of Bioinformatics UIET, CSJMU University, Kanpur

Sequence data mining using CLUSTAL W

- Sequential pattern mining is a topic of data mining concerned with finding statistically relevant patterns between data examples where the values are delivered in a sequence. It is usually presumed that the values are discrete, and thus time series mining is closely related, but usually considered a different activity.
- Biological sequences define the sequences of nucleotides or amino acids. Biological sequence analysis compares, aligns, indexes, and study biological sequences and therefore plays an essential role in bioinformatics and current biology.
- Sequence alignment depends on the fact that all living organisms are associated by development. This indicate that the nucleotide (DNA, RNA) and protein sequences of species that are nearer to each other in evolution must exhibit higher similarities. An alignment is the procedure of lining up sequences to obtain a maximal identity level, which also defines the degree of similarity among sequences.

Conti..

- ClustalW is a tool for aligning multiple protein or nucleotide sequences. The alignment is achieved via three steps: pairwise alignment, guide-tree generation and progressive alignment.
- Clustal W is a general purpose multiple alignment program for DNA or proteins. The sensitivity of the commonly used progressive multiple sequence alignment method has been greatly improved for the alignment of divergent protein sequences.
- The objective of Clustal W to align three or more sequences to find out structural and functional relationship between these sequences.
- **Conserved regions:** In biology, during the evolutionary time there may be some regions called group of bases or a sequence of nucleotides preserved as such in DNA, those sequences or a region, if seen in next generations called as Conserved regions.
- **Consensus Sequence:** In a Nucleotide or an amino acid sequence, each base pair (an amino acid or a nucleotide) may occur more frequently at a particular region in different sequences of nature.

Summary of MSA Programs

Program	Advantages	Cautions
CLUSTALW	Uses less memory than other programs	Less accurate or scalable than modern programs
DIALIGN	Attempts to distinguish between alignable and non-alignable regions	Less accurate than CLUSTALW on global benchmarks
MAFFT, MUSCLE	Faster and more accurate than CLUSTALW; good trade-off of accuracy and computational cost. Options to run even faster, with lower average accuracy, for high-throughput applications.	For very large data sets (say, more than 1000 sequences) select time- and memory-saving options
PROBCONS	Highest accuracy score on several benchmarks	Computation time and memory usage is a limiting factor for large alignment problems (>100 sequences)
ProDA	Does not assume global alignability; allows repeated, shuffled and absent domains.	High computational cost and less accurate than CLUSTALW on global benchmarks
T-COFFEE	High accuracy and the ability to incorporate heterogeneous types of information	Computation time and memory usage is a limiting factor for large alignment problems (>100 sequences)

CLUSTALW / CLUSTAL Omega

- Pair wise sequence alignment has been approached with dynamic programming between nucleotide or amino acid sequences. The same approach can be used for alignment of 'n' number of sequences. But this program is limited to pair wise, since there will be exponential increase in memory, number of steps with respect to number of sequences. Because of such limitations with dynamic programming, researchers came up with an approach called *'progressive method'* to align three or more sequences.
- Progressive method was first suggested by Feng and Doolittle in 1987. It compares only a pair of sequences together at a time using the following steps:
- Using the standard dynamic programming algorithm on each pair, we can calculate the (N*(N-1))/2 (N is total number of sequences) distances between the sequence pairs.
- From the distance matrix obtained using the clustering algorithm, construct a guide tree.
- From the tree obtained, align the first node to the second node. After fixing the alignment, add another sequence or the third node. Iterate the step until all the sequences are aligned. When a sequence is aligned to a group or when there is alignment in between the two groups of sequences, the alignment is performed that had the highest alignment score. The gap symbols in the alignment replaced with a neutral character. Where it helps to guide the alignment of sequence- alignment and alignment –alignment.

Conti...

- CLUSTALW uses the progressive algorithm, by adding the sequence one by one until all the sequences are completely aligned.
- Steps for CLUSTAL algorithm
- i) Calculate all possible pairwise alignments, record the score for each pair.
- ii) Calculate a guide tree based on the pairwise distances (algorithm: Neighbor Joining).
- iii) Find the two most closely related sequences
- iv) Align the sequences by progressive method
- a) Calculate a consensus of this alignment.
- b) Replace the two sequences with the consensus.
- c) Find the two next-most closely related sequences.
- d) Iterate until all sequences have been aligned
- v) Expand the consensus sequences with the (gapped) original sequences
- vi) Report the multiple sequence alignment

Tools > Multiple Sequence Alignment > Clustal Omega

Multiple Sequence Alignment

Clustal Omega is a new multiple sequence alignment program that uses seeded guide trees and HMM profile-profile techniques to generate alignments between **three** or more sequences. For the alignment of two sequences please instead use our pairwise sequence alignment tools.

Important note: This tool can align up to 4000 sequences or a maximum file size of 4 MB.

STEP 1 - Enter your input sequences	
Enter or paste a set of	
PROTEIN	
sequences in any supported format:	
Or, upload a file: Choose File No file chosen	Use a example sequence Clear sequence See more example inputs
STEP 2 - Set your parameters	
This website requires cookies, and the limited processing of your personal data in o are agreeing to this as outlined in our Privacy Notice and Terms of Use.	rder to function. By using the site you I agree, dismiss this banner
	Address

rotein Pro	tein	Search Help
ecies imals (261,570) ants (16,840) ngi (8,949)	Create alert Advanced	Hel
ecies imals (261,570) ants (16,840) ngi (8,949)	Summary - 20 per page - Sort by Default order - Sond to -	
ants (16,840) ngi (8,949)	Summary V 20 per page V Son by Delaun order V Send to. V	Filters: Manage Filters
otists (9,075) cteria (372,964)	See <u>prss1 (TRYPSIN) serine protease 1</u> in the Gene database trypsin reference sequences <u>Transcript (1)</u> <u>Protein (1)</u>	Results by taxon Top Organisms [Tree] Mycobacterium tuberculosis (14470) Staphylososcus aurous (10221)
naea (2,373) Jses (2,569) stomize	See the results of this search (25868 items) in our new Identical Protein Groups database.	Streptococcus pneumoniae (9216) Escherichia coli (8870) Mycobacteroides abscessus (8476)
urce databases B (5,869)	Items: 1 to 20 of 684078	All other taxa (632715) More
fSeq (307,857) iProtKB / Swiss-Prot (4,556)	<< First < Prev Page 1 of 34204 Next > Last >>	
stomize netic mpartments	Trypsin [Camelus dromedarius] 1. 120 aa protein Accession: KAB1276184.1 GI: 1756551263	Find related data Database: Select
oroplast (1) ochondrion (3) smid (2,382)	GenPept Identical Proteins FASTA Graphics	Find items
stid (6)	Trypsin [Stylophora pistillata]	Search details
quence length stom range	Accession: PFX29629.1 GI: 1263133443 BioProject Nucleotide Taxonomy	trypsin[All Fields]
lecular weight stom range	GenPept Identical Proteins FASTA Graphics	
lease date stom range	Trypsin [Stylophora pistillata] S. 254 aa protein Accession: PFX24731.1 GI: 1263128440	Search See more.
vision date	BioProject Nucleotide Taxonomy	Recent activity
ion range	GenPept Identical Proteins FASTA Graphics	Turn Off Clear
ar all	Trypsin [Stylophora pistillata]	C trypsin (684078) Protei
ow additional filters	215 aa protein Accession: PFX21168.1 GI: 1263124757 BioProject Nucleotide Taxonomy	Q collegian (0) Protei
	GenPept Identical Proteins FASTA Graphics	Escherichia coli Genom
	trypsin [Donghicola eburneus] 5. 272 aa protein	Q e.coli[orgn] (1) Genom

Tools > Multiple Sequence Alignment > Clustal Omega

Multiple Sequence Alignment

Clustal Omega is a new multiple sequence alignment program that uses seeded guide trees and HMM profile-profile techniques to generate alignments between **three** or more sequences. For the alignment of two sequences please instead use our pairwise sequence alignment tools.

Important note: This tool can align up to 4000 sequences or a maximum file size of 4 MB.

ROTEIN	•
quences in any supported format:	
KAB1276184.1 Trypsin [Camelus dromedarius] ITGVYWEGKELNLASTPDLLQCLNAPSCRTAPAAAPTQAQIT HQGLQLRELDRQTISSY	SNMICVGFHGGWEGLLPVEGSNWLFPVAQGDSGGPVVCNGKLQGIVSWGYGCAVKGKPGC
PEX21168 1 Trypsin [Stylophora pistillata]	
ILASPGGRQFCGGSLIDENWVLTAAHCVYGSSEDRVVIRMG WGTLQSGGEQPDELQEASVPIVSHAQCQQAYGGSIHESMI	AHKITDIGQEIQVQKIIKHENYNPNNFQNDIALLKLTESAKIDKGVGRVCLPDANLSLVPGKKCYIT CAGLDMGGIDACQGDSGGPMVCEFSGKWYLEGATSWGHGCALPNKFGVYAKVRYLKDWV
ILASPGGRQFCGGSLIDENWVLTAAHCVYGSSEDRVVIRMG WGTLQSGGEQPDELQEASVPIVSHAQCQQAYGGSIHESMI	AHKITDIGQEIQVQKIIKHENYNPNNFQNDIALLKLTESAKIDKGVGRVCLPDANLSLVPGKKCYIT CAGLDMGGIDACQGDSGGPMVCEFSGKWYLEGATSWGHGCALPNKFGVYAKVRYLKDWV Use a <u>example sequence Clear sequence See more example inputs</u>
ILASPGGRQFCGGSLIDENWVLTAAHCVYGSSEDRVVIRMG WGTLQSGGEQPDELQEASVPIVSHAQCQQAYGGSIHESMI , upload a file: Choose File No file chosen TEP 2 - Set your parameters	AHKITDIGQEIQVQKIIKHENYNPNNFQNDIALLKLTESAKIDKGVGRVCLPDANLSLVPGKKCYIT CAGLDMGGIDACQGDSGGPMVCEFSGKWYLEGATSWGHGCALPNKFGVYAKVRYLKDWV Use a <u>example sequence</u> <u>Clear sequence</u> <u>See more example inputs</u>

Result Analysis

- The out put of Clustal W you can see that the last lines contains seemingly cabalistic signs such as (*), (:), (.). These three symbols have very precise meanings.
- (*) A star indicates an entirely conserved column.
- (:) A colon indicates columns where all the residues have roughly the same size and the same hydropathy.
- (.) A period indicates columns where the size or the hydropathy has been preserved in the course of evolution.

Main Criteria for Building a MSA

- 1. Structural similarity
- 2. Evolutionary similarity
- 3. Functional similarity
- 4. Sequence similarity

Main Application of Multiple Sequence Alignment

- 1. Phylogenetic analysis
- 2. Pattern Identification
- 3. Extrapolation
- 4. Domain Identification
- 5. DNA Regulatory Elements
- 6. Structure Prediction
- 7. PCR analysis.

• Reference:-

Bioinformatics "A Beginner's Guide" by Jean – Michel (Wiley publication).

THANK YOU