NETWORK LAYER : ROUTING ALGORITHMS

DR. RAVINDRA NATH UIET CSJM UNIVERSITY KANPUR

Dr. Ravindra nath uiet csjm university kanpur

12/10/2021

FUNCTIONS OF THE NETWORK LAYER

- To transport packets from the source to the destination, possibly through some intermediate nodes.
- This involves:
 - Knowing the topology of the communication network.
 - Choosing routes judiciously to avoid overloading some paths.
 - Resolve problems that may arise if Source and Destination are not on the same network.
- In other words, Network Layer performs:
 - Routing
 - Congestion control
 - Internetworking

NETWORK LAYER SERVICE CLASSES

Two possible classes:

- Connection-oriented -- *reliable*, in-sequence delivery.
- Connectionless -- *unreliable*, out-of-order delivery.
- Connection -- logical concept of an entity that connects the Source and Destination at its two ends.
- Supporters for both connection-oriented and connectionless service and so OSI framework supports both.
- Issue of *Connection-oriented* and *Connectionless* service also comes up in other layers.

Dr. Ravindra nath uiet csjm university kanpur

An Internet According to TCP/IP

Dr. Ravindra nath uiet csjm university kanpur

12/10/2021

Δ

VIRTUAL CIRCUIT

- Analogous to physical end-to-end telephone connections.
- When connection is setup, the route over which the packet travels is fixed.
- That route is used by all packets delivered on the Virtual Circuit; *Routing decision need not be taken every time*.
- Packets contain just a circuit identifier rather than full destination address; *Packets are thus smaller*.
- Disadvantage:
 - If a node along the route fails, or if there is congestion, causes major problems.

• Some space on the nodes is used up for tables with entries Dr. Ravindra nath uiet csjm university kanpur about various Virtual Circuits. 12/10/2021

• Useful for **Connection-oriented** service.

DATAGRAMS

- No routes are worked out in advance.
- Each packet is routed independently of its predecessors and is called a *datagram*.
- Successive packets may follow different routes.
- Each packet should contain full source and destination address.
- Advantage: Robust, can adapt to failure of intermediate nodes and congestion.
- Disadvantage:
 - Packets are larger and therefore require more bandwidth.
 - Routing decisions to be made every time causes an additional computational overhead.
- Can be used for **both** *Connection-oriented* and *Connectionless* services.

Datagram Vs Virtual Circuit Subnets

Issue	Datagram subnet	VC subnet
Circuit setup	Not needed	Required
Addressing	Each packet contains the full source and destination address	Each packet contains a short VC number
State information	Subnet does not hold state information	Each VC requires subnet table space
Routing	Each packet is routed independently	Route chosen when VC is set up; all packets follow this route
Effect of router failures	None, except for packets lost during the crash	All VCs that passed through the failed router are terminated
Congestion control	Difficult	Easy if enough buffers can be allocated in advance for each VC

Dr. Ravindra nath uiet csj

Upper layer	Type of	Type of subnet	
	Datagram	Virtual circuit	
Connectionless	UDP over IP	UDP	
		IP	
		ATM	
Connection-oriented	TCP	ATM AAL1	
	over IP	over ATM	

Examples of different combinations of service and subne structure.

Dr. Ravindra nath uiet csjm university kanpur

12/10/2021

- As packets are transported from source nodes to destination nodes, they often require multiple hops to make the journey.
- Routing is the process of deciding what path a packet will take to reach its destination.
- Routing involves the design of:
 - an algorithm to compute routes.
 - data structures to help choose routes.
- A Routing Algorithm:

Dr. Ravindra nath uiet csim university kanpur of Network layer software.

12/10/2021

9

• decides which output link an incoming packet should be transmitted on.

Routing Algorithms

Non Adaptive Algorithms (Static Routing)

The routes are decided or computed in advance, offline and downloaded to the routers when the network is booted.

Adaptive Algorithms

Change the routing decisions based on changes in the topology, traffic

Get the routing information from adjacent routers, or when they change routes (every δT sec, load changes, topology changes)

Metric used for optimization are distance, no. of hops, time etc., Dr. Ravindra nath uiet csim university kanpur

Sink Tree based on No. of Hops

ROUTING

- Direct Routing:
 - When destination is on the same network.
 - Find the MAC address.
 - Encapsulate the datagram in MAC frame.
 - Send the frame to destination.
- Indirect Routing: Find out which is the next host to send the datagram.

The network layer supervises the handling of the packets by the underlying physical networks. We define this handling as the delivery of a packet.

Direct and indirect delivery

Forwarding

Forwarding means to place the packet in its route to its destination. Forwarding requires a host or a router to have a routing table. When a host has a packet to send or when a router has received a packet to be forwarded, it looks at this table to find the route to the final destination.

ROUTING PROCEDURE

- Try Direct routing.
- Check for host-specific route.
- Check route for the destination network.
- Use the Default route.

Route method versus next-hop method

Host-specific versus network-specific method

Default method

ROUTING TABLE

Each node maintains a routing table.

- Table contains pairs (address, next-hop).
- Entries could be network-specific or host-specific.
- Also contains default route entry.
- May contain multiple entries for ToS (type-of-service) routing.
- Table can be created either manually or by a routing protocol, e.g., RIP, or Hello.

Dijkstra's Shortest Path Routing Algorithm

Dr. Ravindra nath uie

Dijkstra algorithm

Dr. Ravindra nath uiet csjm university kanpur

12/10/2021

Dijkstra's Shortest Path Routing Algorithm

Dr. Ravindra nath uiet csjm university kar

path from A to D. The arrows indicate the working node.

Initialization of tables in distance vector routing

In distance vector routing, each node shares its routing table with Dr. Ravindra nath uiet csim university kanpur diate neighbors periodically and when there is a change.

Distance vector routing

Updating in distance vector routing

DISTANCE VECTOR ROUTING

routing table for J.

Dr. Ravindra nath uiet csjm universit, ...

2/10/2021

2

Dr. Ravindra nath ui

New estimated delay from J

Line

A

A

į.

ы

i.

H

ы

КC,

ĸ

J's four neighbors

Dr. Ravindra r

Concept of link state routing

Link state knowledge

Dr. Ravindra nath uiet csjm university kanpur

12/10/2021 30

Example of formation of shortest path tree

31

Dr. Ravindra nath uiet csjm university kanpur

Routing table for node A

Node	Cost	Next Router
А	0	
В	5	
С	2	
D	3	
Е	6	С

Dr. Ravindra nath uiet csjm university kanpur

12/10/2021 32

LINK STATE ROUTING

Dr. Ravindra nath uiet csjm university kanpur

12/10/2021

DYNAMIC ROUTING

- Routers talk to adjacent routers, using a *routing protocol*.
- The process responsible is called a routing daemon.
- Updates the kernel's *routing tables*.
- Internet is a collection of *Autonomous Systems* (AS).
- Intra Domain Routing Protocol for use within an AS.
- Inter Domain Routing Protocol for use between ASs.

Dr. Ravindra nath uiet csjm university kanpur

34

12/10/2021

Autonomous systems

Dr. Ravindra nath uiet csjm university kanpur

12/10/2021

Popular routing protocols

ROUTING PROTOCOLS

- Intra-domain routing protocols
 - Routing Information Protocol (RIP)
 - HELLO
 - Open Shortest Path First (OSPF)
- Inter-domain routing protocols
 - Border Gateway Protocol (BGP)

Dr. Ravindra nath uiet csjm university

12/10/2021

Message type	Description
Hello	Used to discover who the neighbors are
Link state update	Provides the sender's costs to its neighbors
Link state ack	Acknowledges link state update
Database description	Announces which updates the sender has
Link state request	Requests information from the partner

The five types of OSPF messages.

Information F receives from its neighbors about D

From B: "I use BCD" From G: "I use GCD" From I: "I use IFGCD" From E: "I use EFGCD"

(b)

(a) A set of BGP routers. (b) Information sent to F.

CONGESTION CONTROL

- When too many packets are present in the subnet, performance degrades. This situation is called *congestion*.
- Congestion can be brought about by several factors:
 - when nodes do not have enough processing capability.
 - when the rate of incoming traffic exceeds the rate of outgoing traffic.
- Following strategies can be used for congestion control:
 - Allow nodes to discard packets if they cannot be processed quickly.
 - Restrict the total number of packets in the network.
 - Use flow control to avoid congestion.
 - Choke the input when the network is overloaded.

Dr. Ravindra nath uiet csjm university kanpur

• Allocate the resources in advance.

12/10/2021 42

Dr. Ravindra nath uiet csjm uni

0/2021

Layer	Policies
Transport	 Retransmission policy Out-of-order caching policy Acknowledgement policy Flow control policy Timeout determination
Network	 Virtual circuits versus datagram inside the subnet Packet queueing and service policy Packet discard policy Routing algorithm Packet lifetime management
Data link	 Retransmission policy Out-of-order caching policy Acknowledgement policy Flow control policy

44

0/2021

12/10/2021

INTERNETWORKING

Another primary function of the Network Layer.

- Network Layer has to deal with the issues that arise when Source and Destination are on different networks.
- Some of the issues are:
 - Routing across networks -- more complex routing decisions.
 - Different protocols used in different networks

 -requires conversion between the protocols.
 - One can also use encapsulation technique.

Dr. Ravindra nath uiet csjm university kanpur

ENCAPSULATION

- When a packet of one protocol is sent as data portion of another protocol, it is called encapsulation.
- In a layered network architecture, each protocol encapsulates packet from upper layer protocol.
- Can also be used for internetworking. For example, to transmit an IP packet across an X.25 network:
 - At the border router of IP and X.25, create an X.25 packet with source address as that of this border router.
 - Set the destination address to that of multi-protocolrouter on the other side, which connects X.25 network

to the IP network.

• Include the IP packet as data portion of X.25 packet.

Dr. Ravindra nath uiet csjm university kanpur

• Transmit the packet.

12/10/2021 48

Encapsulation

Item	Some Possibilities
Service offered	Connection-oriented versus connectionless
Protocols	IP, IPX, CLNP, AppleTalk, DECnet, etc.
Addressing	Flat (802) versus hierarchical (IP)
Multicasting	Present or absent (also broadcasting)
Packet size	Every network has its own maximum
Quality of service	May be present or absent; many different kinds
Error handling	Reliable, ordered, and unordered delivery
Flow control	Sliding window, rate control, other, or none
Congestion control	Leaky bucket, choke packets, etc.
Security	Privacy rules, encryption, etc.
Parameters	Different timeouts, flow specifications, etc.
Accounting	By connect time, by packet, by byte, or not at all

Dr. Ravindra nath uiet csjm u

Fig. 5-35. Some of the many ways networks can differ.