Number Systems - Conversion \& Math Practice Problems

Conversion Problems

1. Convert each of the following binary numbers to octal, decimal, and hexadecimal formats.
$(111011101)_{2}$
$(10101010111)_{2}$
$(111100000)_{2}$
2. Convert each of the following octal numbers to binary, decimal, and hexadecimal formats.
(3754) ${ }_{8}$
$(7777)_{8}$
$(247)_{8}$
3. Convert each of the following decimal numbers to binary, octal, and hexadecimal formats.
$(3479)_{10}$
$(642)_{10}$
$(555)_{10}$
4. Convert each of the following hexadecimal numbers to binary, octal, and decimal formats.
$(4 \mathrm{FB} 2)_{16}$
$(88 B A E)_{16}$
$(D C 4)_{16}$

Math Problems

1. Perform each of the addition operations indicated below.
$(1001011)_{2}+(11101)_{2}$
$(4556)_{8}+(1245)_{8}$
$(\mathrm{BCD})_{16}+(\mathrm{A} 34)_{16}$
2. Form the two's complement of each of the following binary numbers.
$(111011101110)_{2}$
$(11111111000100)_{2}$
$(100000000)_{2}$
$(1010101010111)_{2}$
3. Perform each of the subtraction operations indicated below using addition and the two's complement of the subtrahend.
$(100101)_{2}-(11011)_{2}$
$(1101011)_{2}-(111010)_{2}$
$(1110111)_{2}-(10110111)_{2}$

Number Systems - Conversion \& Math Practice Problems

Conversion Problems

Solutions

5. Convert each of the following binary numbers to octal, decimal, and hexadecimal formats.
$(111011101)_{2}$
to octal: $111011101=(735)_{8}$
to decimal: $=\left(1 \times 2^{8}\right)+\left(1 \times 2^{7}\right)+\left(1 \times 2^{6}\right)+\left(1 \times 2^{4}\right)+\left(1 \times 2^{3}\right)+\left(1 \times 2^{2}\right)+\left(1 \times 2^{0}\right)$

$$
=256+128+64+16+8+4+1
$$

$$
=(477)_{10}
$$

to hexadecimal: $000111011101=(1 \mathrm{DD})_{16}$
(10101010111) ${ }_{2}$
to octal: $010101010111=(2527)_{8}$
to decimal: $=\left(1 \times 2^{10}\right)+\left(1 \times 2^{8}\right)+\left(1 \times 2^{6}\right)+\left(1 \times 2^{4}\right)+\left(1 \times 2^{2}\right)+\left(1 \times 2^{1}\right)+\left(1 \times 2^{0}\right)$
$=1024+256+64+16+4+2+1$
$=(1367)_{10}$
to hexadecimal: $=010101010111(557)_{16}$

$(111100000)_{2}$

to octal: = $111100000(740)_{8}$
to decimal: $=\left(1 \times 2^{8}\right)+\left(1 \times 2^{7}\right)+\left(1 \times 2^{6}\right)+\left(1 \times 2^{5}\right)$

$$
=256+128+64+32
$$

$$
=(480)_{10}
$$

to hexadecimal: $=000111100000(1 \mathrm{EO})_{16}$
6. Convert each of the following octal numbers to binary, decimal, and hexadecimal formats.
(3754) ${ }_{8}$
to binary: $=(11111101 \text { 100 })_{2}$
to decimal: $=\left(3 \times 8^{3}\right)+\left(7 \times 8^{2}\right)+\left(5 \times 8^{1}\right)+\left(4 \times 8^{0}\right)$

$$
=1536+448+40+4
$$

$$
=(2028)_{10}
$$

to hexadecimal: $=(011111101100)_{2}=(7 E C)_{16}$
(7777) ${ }_{8}$
to binary: $=(111111111111)_{2}$
to decimal: $=\left(7 \times 8^{3}\right)+\left(7 \times 8^{2}\right)+\left(7 \times 8^{1}\right)+\left(7 \times 8^{0}\right)$

$$
=3584+448+56+7
$$

$$
=(4095)_{10}
$$

to hexadecimal: $=(111111111111)_{2}=(\text { FFF })_{16}$
(247) ${ }_{8}$
to binary: $=(10100111)_{2}$
to decimal: $=\left(2 \times 8^{2}\right)+\left(4 \times 8^{1}\right)+\left(7 \times 8^{0}\right)$

$$
=128+32+7
$$

$$
=(167)_{10}
$$

to hexadecimal: $=(10100111)_{2}=(\mathrm{A} 7)_{16}$
7. Convert each of the following decimal numbers to binary, octal, and hexadecimal formats.
$(3479)_{10}$

$$
\begin{array}{cc}
\text { to binary: }=3479 \div 2=1739 & \text { rem }=1 \\
1739 \div 2=869 & \text { rem }=1 \\
869 \div 2=434 & \text { rem }=1 \\
434 \div 2=217 & \text { rem }=0 \\
217 \div 2=108 & \text { rem }=1 \\
108 \div 2=54 & \text { rem }=0 \\
54 \div 2=27 & \text { rem }=0 \\
27 \div 2=13 & \text { rem }=1 \\
13 \div 2=6 & \text { rem }=1 \\
6 \div 2=3 & \text { rem }=0 \\
3 \div 2=1 & \text { rem }=1 \\
1 \div 2=0 & \text { rem }=1
\end{array}
$$

reading bottom to top of remainders $=(110110010111)_{2}$

$$
\begin{array}{rlr}
\text { to octal: }=3479 \div 8=434 & & \text { rem }=7 \\
& 434 \div 8=54 & \\
& \text { rem }=2 \\
& 54 \div 8=6 & \text { rem }=6 \\
& 6 \div 8=0 & \text { rem }=6
\end{array}
$$

reading bottom to top of remainders $=(6627)_{8}$
to hexadecimal: $=3479 \div 16=217 \quad$ rem $=7$

$$
\begin{array}{cc}
217 \div 16=13 & \text { rem }=9 \\
13 \div 16=0 & \text { rem }=13(D) \\
\text { reading bottom to top of remainders }=(D 97)_{16}
\end{array}
$$

(642) ${ }_{10}$

$$
\begin{array}{cc}
\text { to binary: }=642 \div 2=321 & \text { rem }=0 \\
321 \div 2=160 & \text { rem }=1 \\
160 \div 2=80 & \text { rem }=0 \\
80 \div 2=40 & \text { rem }=0 \\
40 \div 2=20 & \text { rem }=0 \\
20 \div 2=10 & \text { rem }=0 \\
10 \div 2=5 & \text { rem }=0 \\
5 \div 2=2 & \text { rem }=1 \\
2 \div 2=1 & \text { rem }=0 \\
1 \div 2=0 & \text { rem }=1
\end{array}
$$

reading bottom to top of remainders $=(1010000010)_{2}$

$$
\begin{array}{rlrl}
\text { to octal: }= & 642 \div 8=80 & & \text { rem }=2 \\
& 80 \div 8=10 & & \text { rem }=0 \\
& 10 \div 8=1 & \text { rem }=2 \\
& 1 \div 8=0 & & \text { rem }=1
\end{array}
$$

reading bottom to top of remainders $=(1202)_{8}$
to hexadecimal: $=642 \div 16=40$

$$
\begin{array}{ll}
40 \div 16=2 & \text { rem }=8 \\
2 \div 16=0 & \text { rem }=2
\end{array}
$$

reading bottom to top of remainders $=(282)_{16}$
$(555)_{10}$

$$
\begin{array}{cc}
\text { to binary: }=555 \div 2=277 & \text { rem }=1 \\
277 \div 2=138 & \text { rem }=1 \\
138 \div 2=69 & \text { rem }=0 \\
69 \div 2=34 & \text { rem }=1 \\
34 \div 2=17 & \text { rem }=0 \\
17 \div 2=8 & \text { rem }=1 \\
8 \div 2=4 & \text { rem }=0 \\
4 \div 2=2 & \text { rem }=0 \\
2 \div 2=1 & \text { rem }=0
\end{array}
$$

$$
1 \div 2=0 \quad \text { rem }=1
$$

reading bottom to top of remainders $=(1000101011)_{2}$

$$
\begin{array}{rlr}
\text { to octal: }= & 555 \div 8=69 & \\
& \text { rem }=3 \\
& 69 \div 8=8 & \\
& \text { rem }=5 \\
& 8 \div 8=1 & \\
& \text { rem }=0 \\
1 \div 8=0 & & \text { rem }=1
\end{array}
$$

reading bottom to top of remainders $=(1053)_{8}$
to hexadecimal: $=555 \div 16=34 \quad$ rem $=11$ (B)

$$
\begin{array}{ll}
34 \div 16=2 & \text { rem }=2 \\
2 \div 16=0 & \text { rem }=2
\end{array}
$$

reading bottom to top of remainders $=(22 B)_{16}$
8. Convert each of the following hexadecimal numbers to binary, octal, and decimal formats.

(4FB2) ${ }_{16}$

to binary: $(100111110110010)_{2}$
to octal: $(100111110110010)_{2}=(47662)_{8}$
to decimal: $=\left(4 \times 16^{3}\right)+\left(15 \times 16^{2}\right)+\left(11 \times 16^{1}\right)+\left(2 \times 16^{0}\right)$
$=(4 \times 4096)+(15 \times 256)+(11 \times 16)+(2 \times 1)$
$=16384+3840+176+2$
$=(20402)_{10}$

(88BAE) ${ }_{16}$

to binary: (1000 1000101110101110$)_{2}$
to octal: $(10001000101110101110)_{2}=(2105656)_{8}$
to decimal: $=\left(8 \times 16^{4}\right)+\left(8 \times 16^{3}\right)+\left(11 \times 16^{2}\right)+\left(10 \times 16^{1}\right)+\left(14 \times 16^{0}\right)$
$=(8 \times 65536)+(8 \times 4096)+(11 \times 256)+(10 \times 16)+(14 \times 1)$
$=16384+3840+176+14$
$=(560046)_{10}$
(DC4) ${ }_{16}$
to binary: $(110111000100)_{2}$
to octal: $(110111000100)_{2}=(6704)_{8}$
to decimal: $=\left(13 \times 16^{2}\right)+\left(12 \times 16^{1}\right)+\left(4 \times 16^{0}\right)$
$=(13 \times 256)+(12 \times 16)+(4 \times 1)$
$=3328+192+4$
$=(3524)_{10}$

Math Problems

4. Perform each of the addition operations indicated below.

$$
(1001011)_{2}+(11101)_{2}
$$

11111 carry
1001011

+ 11101

1101000
$(4556)_{8}+(1245)_{8}$
111 carry
4556
$\begin{array}{r}+1245 \\ \hline 6023\end{array}$
$(\mathrm{BCD})_{16}+(\mathrm{A} 34)_{16}$
11 carry
BCD
$\begin{array}{r}\text { BCD } \\ +\quad \text { A34 } \\ \hline\end{array}$
1601
5. Form the two's complement of each of the following binary numbers.
$(111011101110)_{2}$
technique \#1: form one's complement and add 1
000100010001
$+\quad 1$
$+\quad 000100010010$
technique \#2: leave least significant 0's unchanged up to an including first least significant 1 - then complement all remaining bits.
$(11111111000100)_{2}$
two's complement is: 00000000111100
$(100000000)_{2}$
twos' complement is: 100000000 (note that it is the same!)

$(1010101010111)_{2}$

two's complement is: 0101010101001
6. Perform each of the subtraction operations indicated below using addition and the two's complement of the subtrahend.
$(100101)_{2}-(11011)_{2}$

```
    1 1 1 carry
    100101
+ 100101
    1001010 carry out of MSB is ignored
    result is (1010)2 = (10) 10
(1101011)}\mp@subsup{)}{2}{}-(111010)\mp@subsup{)}{2}{
            1 1 1 ~ c a r r y ~
    1101011
+ 1000110
    10110001 carry out of MSB is ignored
    result is (110001)2 = (49) 10
```

$(1110111)_{2}-(10110111)_{2}$
1111111 carry
01110111
+01001001
11000000 no carry out of $\mathrm{MSB}-$ result is in 2^{\prime} s
and is negative, result is $(1000000)_{2}=(-64)_{10}$

