


• In 1943, Warren McCulloch and Walter Pitts introduced one of the first artificial neurons.

• The main feature of their neuron model is that a weighted sum of input signals is compared to a 
threshold to determine the neuron output. 

• When the sum is greater than or equal to the threshold, the output is 1. When the sum is less than 
the threshold, the output is 0. 



• The perceptron is a simplified representation of the biological neuron in 
the brain.

• It is also known as the Single Layer Perceptron(SLP).

• The perceptron model was proposed by McCulloch & Pitts in 1943. 

• The perceptron is the simplest form of a neural network for patterns that 
are linearly separable.

• The structure of a perceptron consists of a single neuron with adjustable 
synaptic weights and bias.

• The weights are adjusted during the training phase, as training data is 
presented to it.

• The model consists of a linear combiner followed by a hard limiter 
(performing the signum function).

• Also incorporates an externally applied bias.

• Output is +1 (if hard limiter output is positive) and -1 (if hard limiter 
output is negative).





• Perceptrons can only classify linearly separable cases.

• Lets say we want to classify a set of data into either Group A (GA ) or Group B (GB ). 

• If GA and GB are linearly separable, there exists a separating hyperplane between the two groups 
which is linear in nature. 

• In simple terms, there is a straight line dividing between GA and GB .

• Consider the cases of AND and OR:





• First, consider the network weight matrix:

• define a vector composed of the elements of the ith row of :

• Now we can partition the weight matrix:

•  the ith element of the network output vector as



Let’s consider a two-input perceptron with one neuron

The output of this network is determined by



Decision Boundary: The decision boundary is determined by the input vectors for which the net input 
is zero:

let’s assign the following values for the weights and bias:

The decision boundary is then

To find the p2 intercept set p1=0:

To find the p1 intercept set p2=0:



1wTp + b = 0

• The boundary is always orthogonal to 1w

• any vector in the shaded region, will have an inner product greater than -b , and vectors 
in the unshaded region will have inner products less than -b.

• the weight vector will always point toward the region where the neuron output is 1





• For simple Perceptrons performing classification, we have seen that the 
decision boundaries are hyperplanes, and we can think of learning as the 
process of shifting around the hyperplanes until each training pattern is 
classified correctly.

• Somehow, we need to formalise that process of “shifting around” into a 
systematic algorithm that can easily be implemented on a computer.

• The “shifting around” can conveniently be split up into a number of 
small steps.

• If the network weights at time t are wij(t) , then the shifting process 
corresponds to moving them by an amount ∆wij(t) so that at time t+1 we have 
weights

• It is convenient to treat the thresholds as weights, as discussed 
previously, so we don’t need separate equations for them.



• Suppose the target output of unit j is  and the actual output is 
), where  are the activations of the previous layer of 

neurons (e.g. the network inputs). Then we can just go through all the 
possibilities to work out an appropriate set of small weight changes, and 
put them into a common form:

• This weight update equation is called the Perceptron Learning Rule. The positive 
parameter η is called the  or  – it determines how smoothly we 
shift the decision boundaries.



• The weight changes ∆wij need to be applied repeatedly – for each weight 
wij in the network, and for each training pattern in the training set. One 
pass through all the weights for the whole training set is called one 

 of training.

• Eventually, usually after many epochs, when all the network outputs match 
the targets for all the training patterns, all the ∆wij will be zero and 
the process of training will cease. We then say that the training process 
has  to a solution.

• It can be shown that if there does exist a possible set of weights for a 
Perceptron which solves the given problem correctly, then the Perceptron 
Learning Rule will find them in a finite number of iterations

• Moreover, it can be shown that if a problem is linearly separable, then 
the Perceptron Learning Rule will find a set of weights in a finite number 
of iterations that solves the problem correctly
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Example:
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