
STABILITY 
 

CHAPTER 13 



• The overall response of the control system was no higher than 
second-order. 

• Hence, the system is inherently stable. 
• In this chapter we consider the problem of stability in a control 

system only slightly more complicated than any studied previously.  
• This system might represent proportional control of two stirred-

tank heaters with measuring lag.  
• In this discussion, only set point changes are to be considered. 



For a unit-step change in R, the transform of the response is 

To obtain the transient response C(t), it is necessary to find the 
inverse of Eq.  
This requires obtaining the roots of the denominator of Eq., 
which is third-order. 
We can no longer find these roots as easily as we did for the 
second-order systems by use of the quadratic formula. 
It is apparent that the roots of the denominator depend upon 
the particular values of the time constants and Kc .  
These roots determine the nature of the transient response, 
according to the rules presented in Fig.  
It is of interest to examine the nature of the response for the 
control system of Fig.  as K c is varied 



• Assuming the time constants 1 , 2 , and 3 to be fixed.  

• To be specific, consider the step response for several values of 
Kc 

 

• it is seen that as K c increases, the system response becomes 
more oscillatory.  

• In fact, beyond a certain value of K c , the successive amplitudes 
of the response grow rather than decay; 

•  This type of response is called unstable 



• In this chapter, the focus is on developing a clearer 
understanding of the concept of stability.  

• In addition, we develop a quick test for detecting roots having 
positive real parts,  

DEFINITION OF STABILITY (LINEAR SYSTEMS) 

 

• A bounded input function is a function of time that always 
falls within certain bounds during the course of time.  

• For example, the step function and sinusoidal function are 
     bounded inputs.  
• The function f (t)=  t is obviously unbounded. 



• A linear mathematical model (set of linear differential 
equations describing the system) from which stability 
information is obtained is meaningful only over a certain 
range of variables.  

• For example, a linear control valve gives a linear relation 
between flow and valve-top pressure only over the range of 
pressure (or flow) corresponding to values between which 
the valve is shut tight or wide open. 

• When the valve is wide open, for example, further change 
in pressure to the diaphragm will not increase the flow.  

• We often describe such a limitation by the term saturation.  
• A physical system, when unstable, may not follow the 

response of its linear mathematical model beyond certain 
physical bounds but rather may saturate.  

• However, the prediction of stability by the linear model is 
of utmost importance in a real control system since 
operation with the valve shut tight or wide open is clearly 
unsatisfactory control. 



STABILITY CRITERION 
• Translate the stability definition into a simpler criterion, 

CHARACTERISTIC EQUATION 

Suppose a unit-step change in set point is applied. 
 Then 

where r 1 , r 2 , . . . , r n are the n roots of the equation 

F (s) is a function that arises in the rearrangement to the right-
hand form 







• If there are any of the roots r 1 , r 2 , . . . , r n in the right half of the complex plane,  

 the response C ( t ) will contain a term that grows exponentially in time and  the 
system is unstable. 

•  If there are one or more roots of the characteristic equation at the origin, there is an 
s m in the denominator of Eq (where m ≥ 2) and the response is again unbounded, 
growing  as a polynomial in time.  

• This condition specifies m as greater than or equal to 2, not 1, term will invert to a 
term of the form C1 t, which is unbounded.) 

•  Additionally, if there is a pair of conjugate roots of the characteristic equation on the 
imaginary axis, the contribution to the overall step response is a pure sinusoid, which 
is bounded. 

• However, if the bounded input is taken as sin ω t, where ω is the imaginary part of 
the conjugate roots, the contribution to the overall response is a sinusoid with an 
amplitude that increases as a polynomial in time [the response will have a term of 
the form C 1 t sin(ω t + )]. 

• Thus, if a root lies on the imaginary axis, there is the potential for repeating the root 
of a bounded input (such as a step input or a sinusoid input), and the response will 
be unstable. 

• Therefore, the right-half plane, including the imaginary axis, is the unstable region 
for location of roots of the characteristic equation. 



• characteristic equation of a control system, which determines 
its stability, is the same for set point or load changes. 

• The stability depends only upon G (s), the open-loop transfer 
function. 

• Furthermore, although the rules derived above were based on 
a step input, they are applicable to any input. 

 

The characteristic equation is therefore 

which is equivalent to 

Solving by the quadratic formula gives 

Since the real part of s 1 and s 2 is negative (3/2), the system is stable. 



ROUTH TEST FOR STABILITY 

• The Routh test is a purely algebraic method for 
determining how many roots of the characteristic 
equation have positive real parts. 

• from this it can also be determined whether the system 
is stable.  

• The test is limited to systems that have polynomial 
characteristic equations. 

• This means that it cannot be used to test the stability of a 
control system containing a transportation lag 
(exponential function) .  

• The procedure for application of the Routh test is 
presented without proof.  

• The proof is available elsewhere (Routh, 1905) and is 
mathematically beyond the scope of this text. 



• The procedure for examining the roots is to write the 
characteristic equation in the form 

 

• where a0 is positive. (If a0 is originally negative, both sides are 
multiplied by -1.) 

• In this form, it is necessary that all the coefficients be positive 
if all the roots are to lie in the left half-plane. 

 

• If any coefficient is negative, the system is definitely unstable, 
and the Routh test is not needed to answer the question of 
stability. (However, in this case, the Routh test will tell us the 
number of roots in the right half-plane.)  

• If all the coefficients are positive, the system may be stable or 
unstable.  

• It is then necessary to apply the following procedure to 
determine stability. 



Routh Array 
Arrange the coefficients of Eq. into the first two rows of the 
Routh array as follows: 

The array has been filled in for n= 7 to simplify the discussion.  
For any other value of n, the array is prepared in the same manner.  
In general, there are n+ 1 rows.  
For n even, the first row has one more element than the second row. 



The elements in the remaining rows are found from the formulas 

 

• The elements for the other rows are found from formulas that 
correspond to those just given.  

• The elements in any row are always derived from the elements 
of the two preceding rows. 

• During the computation of the Routh array, any row can be 
divided by a positive constant without changing the results of 
the test.  

     (The application of this rule often simplifies the arithmetic.) 
• Having obtained the Routh array, we can apply the following 

theorems to determine stability. 



THEOREMS OF THE ROUTH TEST 

• Theorem 1.The necessary and sufficient condition for all the roots 
of the characteristic equation to have negative real parts (stable 
system) is that all elements of the first column of the Routh array ( 
a 0 , a 1 , b 1 , c 1 , etc.) be positive and nonzero. 
 

• Theorem 2. If some of the elements in the first column are 
negative, the number of roots with a positive real part (in the right 
half-plane) is equal to the number of sign changes in the first 
column. 
 

• Theorem 13.3. If one pair of roots is on the imaginary axis, 
equidistant from the origin, and all other roots are in the left half-
plane, then all the elements of the n th row will vanish and none of 
the elements of the preceding row will vanish. The location of the 
pair of imaginary roots can be found by solving the equation 

where the coefficients C and D are the elements of the array in the ( n – 1)st row 
as read from left to right, respectively. 



• The algebraic method for determining stability is limited in its 
usefulness in that all we can learn from it is whether a system 
is stable. 

• It does not give us any idea of the degree of stability or the 
roots of the characteristic equation. 

 

Since there is no change in sign in the 
first column, there are no roots having 
positive real parts, and the system is 
stable. 



Determine the values of K c for which the control system is stable.  
For the value of K c for which the system is on the threshold of instability, 
determine the roots of the characteristic equation. 

The characteristic equation 1+ G (s)  =0 becomes 

Rearrangement of this equation for use in the Routh test gives 

Since the proportional sensitivity of the 
controller Kc is a positive quantity, we see 
that the fourth entry in the first column, 
6(1 + K c ), is positive. 

It is concluded that the 
system will be stable only 
if Kc  10 



• At Kc =10, the system is on the verge of instability, and the 
element in the n th (third) row of the array is zero. 

• According to Theorem 3, the location of the imaginary roots is 
obtained by solving 

Therefore, two of the roots on the imaginary axis are 
located at 

The third root can be found by expressing Eq. (13.11) in factored form 

where s1 , s2 , and s 3 are the roots. Introducing the two imaginary roots  
( s1 = j 11 and s2=-j 11 ) into Eq. and multiplying out the terms give 



  
• Comparing this equation with Eq. we see that s3 = - 6. 

 Let Using the new parameters given above in this equation leads to 

Notice that the order of the characteristic equation has increased from 
three to four as a result of adding integral action to the controller.  
The Routh array becomes 

Because there are two sign changes in the first 
column, we know from Theorem 2 of 
the Routh test that two roots have positive real 
parts.  



• There are two distinct approaches to this problem: root locus 
methods and frequency-response methods. 

• Root locus methods allow rapid determination of the location 
of the roots of the characteristic equation as functions of 
parameters such as Kc.  

• However, they are difficult to apply to systems containing 
transportation lags.  

• Also, they require a reasonably accurate knowledge of the 
theoretical process transfer function. 

• In next chapter we will discuss for obtaining more 
information about the actual location of the roots of the 
characteristic equation.  

• This will enable us to predict the form of the curves for 
various values of K c .  

• The advantage of these tools is that they are graphical and 
are easy to apply compared with standard algebraic 
solutions of the characteristic equation. 


