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• The purpose of this chapter 

 First, it is indicated that the stability of a control system can 
usually be determined from the Bode diagram of its open-loop transfer 
function.  

 Second, The methods are presented for rational selection of 
controller parameters based on this Bode diagram.  

 

THE BODE STABILITY CRITERION 

• Control system is unstable if the open-loop frequency response 
exhibits an AR exceeding unity at the frequency for which the phase 
lag is 180 °.  

• This frequency is called the crossover frequency.  

• The rule is called the Bode stability criterion.  

• Fortunately, most process control systems can be analyzed with the 
simple Bode criterion, and it therefore finds wide application. 



• Phase behavior of a complex system for which the Bode 
criterion is not applicable. 

GAIN AND PHASE MARGINS 

The crossover frequency, at which the phase lag is 180°, is noted as 
wco on the Bode diagram.  
At this frequency, the AR is A.  
If A exceeds unity, we know from the Bode criterion that the system 
is unstable and that we have made a poor selection of Gc ( s ). 
A is less than unity and therefore the system is stable. 



• It is necessary to ascertain to what degree the system is stable.  

• Intuitively, if A is only slightly less than unity, the system is “almost 
unstable” and may be expected to behave in a highly oscillatory 
manner even though it is theoretically stable.  

 Open-loop Bode diagram for a typical control system. 

Furthermore, the constant A is determined by the physical 
parameters of the system, such as time constants.  
Hence, a design for which A is close to unity does not have an 
adequate safety factor. 
To assign some quantitative measure to these considerations, the 
concept of gain margin (GM) is introduced. 

Typical specifications for design are that the gain margin should be  
greater than 1.7. 
This means that the AR at crossover could increase by a factor of 1.7 
over the design value before the system became unstable. 



• Gain margin is really a safety factor that 
maintains the AR a “safe distance” away 
from AR= 1 at wco . 

• As such, its value varies considerably 
with the application and designer.  

• A gain margin of unity or less indicates 
an unstable system. 

• Another margin frequently used for 
design is the phase margin.  

• It is the difference between 180° and 
the phase lag at the frequency for which 
the gain is unity. 



• The phase margin therefore represents the additional amount of phase 
lag required to destabilize the system, just as the gain margin represents 
the additional gain for destabilization. 

• Typical design specifications are that the phase margin must be greater 
than 30 °.  

• A negative phase margin indicates an unstable system. 

These are to be regarded as fixed, while the proportional gain K c is to 
be varied to give a satisfactory phase margin. 



The closed-loop transfer function for this system is given by Eq. 
rewritten for our particular case as 

• Since the closed-loop system is second-order, it can never be 
unstable.  

• The lower ζ 2 is made, the more oscillatory and hence the “less 
stable” will be the response.  

• Therefore, a relationship between phase margin and ζ 2 will give 
the relation between phase margin and relative stability. 



• To find this relation the open-loop Bode diagram is prepared 
and is shown in Fig.  

• The simplest way to proceed from this diagram is as follows: 
Consider a typical frequency ω= 4.  

• If the open-loop gain were 1 at this frequency, then since the 
phase angle is  152 °, the phase margin would be 28 °.  

• To make the open-loop gain 1 at ω=  4, it is required that 



Hence, a point on the curve of ζ 2 versus phase margin is 

From this figure it is seen that ζ2  decreases with 
decreasing phase margin. 
If the phase margin is less than 30 °, then ζ2  is less 
than 0.26.  
it can be seen that the response of this system for  
ζ2 < 0.26 is highly oscillatory, hence relatively  
unstable, compared with a response for the system 
with phase margin 50 ° and ζ2 =  0.4. 



• Thus, the phase margin is a useful design tool for application to 
systems of higher complexity.  

• To repeat, the rule of thumb is that the phase margin must be 
greater than 30 ° 

• A similar statement can be made about the gain margin.  

• As the gain margin is increased, the system response generally 
becomes less oscillatory, hence more stable. 

• A control system designer will often try to make both the gain and 
phase margins equal to or greater than specified minimum values, 
typically 1.7 and 30 °. 

• However, the phase margin requirement of 30 ° necessitates that 
ζ2 > 0.26, hence Kc < 14, which means that an offset of 1/15 must 
be accepted.  

 

 

 



The gain is to be specified for the two cases: 





Case 1. Consider first the gain margin.  
• The crossover frequency for the curve with derivative action is 8.62 rad/min.  
• At this frequency, the open-loop gain is 0.0445 if the value of Kc is unity. 

(Including the factor of 1 /10 in the ordinate is actually equivalent to plotting 
the case Kc = 1.) 

• Therefore, according to the Bode criterion, the value of Kc necessary to 
      destabilize the loop is 1/0.0445, or 22.5.  
• To achieve a gain margin of 1.7, K c must be taken as 22.5/1.7, or 13.2.  
• To achieve proper phase margin, note that the frequency for which the 
      phase lag is 150 ° (phase margin is 30 ° ) is 5.52 rad/min.  
• At this frequency, a value for K c of 1/0.0815, or 12.3, will cause the open-

loop gain to be unity.  
• Since this is lower than 13.2, we use 12.3 as the design value of K c .  
• The resulting gain margin is then 1.83. 

In almost every situation, the designer faces this conflict between 
speed of response and degree of oscillation.  
In addition, if integral action is not used, the amount of the offset 
must be considered. 



• The concepts of gain and phase margin are useful in selecting Kc 
for proportional action.  

• However, for additional modes of control such as PD, these 
concepts are difficult to apply in practice. 

• A typical design procedure is to select the value of D for which 
the value of Kc resulting in a 30° phase margin is maximized. 

• The motivation for this choice is that the offset will be minimized.  

• However, the procedure is clearly trial and error. 

• In the case of three-mode control, there are two parameters,  I 
and D , which must be varied by trial to meet various design 
criteria.  

• Fortunately, for this case and others there are simple rules for 
directly establishing values of the control parameters that usually 
give satisfactory gain and phase margins.  

• These are the Ziegler-Nichols rules, 



 ZIEGLER-NICHOLS CONTROLLER SETTINGS 

Consider selection of a controller Gc for the general control system of Fig.  
• We first plot the Bode diagram for the final control element, the 

process, and the measuring element in series G1G2H (jw).  
• It should be emphasized that the controller is omitted from this plot.  
• As noted on the figure, the crossover frequency for these three 

components in series is ωco . 
• At the crossover frequency, the overall amplitude ratio is A, as indicated. 
• According to the Bode criterion, then, the gain of a proportional 

controller which would cause the system to be on the verge of 
instability is 1/ A.  



We define this quantity to be the ultimate gain Ku 

The ultimate period Pu is defined as the period 
of the sustained cycling that would occur 
if a proportional controller with gain Ku were 
used. 

The factor of 2 π appears, so Pu will be in units of 
time per cycle rather than time per radian. 
It should be emphasized that Ku and Pu are easily 
determined from the Bode diagram 



• The Ziegler-Nichols settings for controllers are determined 
directly from Ku and Pu according to the rules summarized in 
Table 

Unfortunately, specifications of Kc and D for PD control cannot be made using 
only  Ku and Pu .  
In general, the values 0.6 Ku and Pu /8, which correspond to the limiting case of 
no integral action in a three mode controller, are too conservative.  
That is, the resulting system will be too stable. 
There exist methods for this case which are in principle no more difficult to use 
than the Ziegler-Nichols rules.  



• One of these is selection of D for maximum Kc at 30 ° phase 
margin, which was discussed above.  

• Another method, which utilizes the step response and avoids 
trial and error. 

• The reasoning behind the Ziegler-Nichols selection of values 
of Kc is relatively clear.  

• In the case of proportional control only, a gain margin of 2 is 
established.  

• The addition of integral action introduces more phase lag at 
all frequencies hence a lower value of Kc is required to 
maintain roughly the same gain margin.  

• Adding derivative action introduces phase lead.  

• Hence, more gain may be tolerated.  

• However, by and large the Ziegler-Nichols settings are based 
on experience with typical processes and should be regarded 
as first estimates. 



Using the Ziegler-Nichols rules, determine Kc and I for 
the control system shown in Fig. 

We first obtain the crossover frequency by applying the Bode stability criterion. 

According to the Bode criterion, the AR is 1.0 at the crossover frequency 
when the system is on the verge of instability. 
Inserting AR= 1 into the above equation and solving for Kc gives Kcu=  2.24. 
From the Ziegler-Nichols rules of Table 



Using the Ziegler-Nichols rules, determine controller settings for 
various modes of control of the two-tank chemical-reactor system 

For convenience, the process gain K and the controller gain Kc are combined into 
an overall gain K1 . The equivalent controller transfer function is regarded as 

where K 1 (as well as t I and t D ) is to be selected by the Ziegler-Nichols rules.  
The required value of K c is then easily determined as 



where K = 0.09 

The Bode diagram for the transfer function without the controller 

constants determined from Table 



• A plot comparing the open-loop frequency responses including 
the controller for the three cases, using the controller constants 
of Table is given in Fig.  

•  This figure shows quite clearly the effect of the phase lead due 
to the derivative action.  

• The resulting gain and phase margins are listed in NEXT Table.  

• From this table it may be seen that the margins are adequate 
and generally conservative. 

• Note that to obtain the Bode diagram for systems including the 
PID controller, the controller transfer function is rewritten as 

 

For the Ziegler- Nichols settings it is seen from Table  that  I = 4  D .  
Making this substitution  



Gain and Phase margins 



Transient Responses 

• Responses of C ( t ) to a unit-step change in R ( t ) are shown in Fig.  
• These responses were obtained using the Ziegler-Nichols 

controller settings determined 



• that addition of integral action eliminates offset at 
the expense of a more oscillatory response.  

• When derivative action is also included, the response 
is much faster (lower rise time) and much less 
oscillatory (lower response time).  

• The large overshoots realized in all three cases are 
characteristic of systems with relatively large time 
delays 



Effect of varying controller settings  
(Z-N indicates response using Ziegler-Nichols settings.) 

• A possible combination, which should 
be tried, is to reduce Kc slightly and to 
increase  I and  D moderately.  

• These changes would probably be 
tried on the actual reactor system 
when it is put into operation.  

• Such adjustments from the 
preliminary settings are usually made 
by experienced control engineers, 
using trial procedures that are more 
art than science. 

For this reason, we leave the problem of 
adjustment at this point  



• We introduced the concepts of Bode stability criterion as well 
as gain margin and phase margin for determining appropriate 
controller settings to obtain the desired system response, 
while maintaining system stability.  

• We also studied the use of Ziegler-Nichols controller settings 
as initial estimates for controller tuning. 



CONTROLLER TUNING 

• The adjustment of the controller parameters to achieve satisfactory 
control is called tuning.  

• The selection of the controller parameters is essentially an 
optimization problem in which the designer of the control system 
attempts to satisfy some criterion of optimality.   

• The process of tuning can vary from a trial-and-error attempt to 
find suitable control parameters for good control to an elaborate 
optimization calculation. 

•  In many applications, there is no model of the process, and the 
criterion for good control is only vaguely defined. 

• Methods for determining the model of a process from experimental 
tests will be described. 

• Determining the model of a process experimentally is referred to as 
process identification. 



PROPORTIONAL CONTROL.  

Proportional control produces an overshoot followed by an oscillatory 
response, which levels out at a value that does not equal the set point;  

this ultimate displacement from the set point is the offset.  

 A typical criterion for good control is that the response of the system to a 
step change in set point or load have minimum overshoot  and a one-
quarter decay ratio. 

 Other criteria may include minimum rise time and minimum settling 
time. 



PROPORTIONAL-DERIVATIVE CONTROL.   

• Response exhibits a smaller overshoot and a smaller period of oscillation 
compared to the response for proportional control.  

• The offset that still remains is less than that for proportional control. 

PROPORTIONAL-INTEGRAL CONTROL.  

• Response has about the same overshoot as proportional control, but the 
period is larger; however, the response returns to the set point (offset  0) after 
a relatively long settling time.  

• The most beneficial influence of the integral action in the controller is the 
elimination of offset. 

PROPORTIONAL-INTEGRAL-DERIVATIVE CONTROL.  

•  The use of PID control combines the beneficial features of PD and PI control.  

       The response has lower overshoot and returns to the set point more quickly       

        than the responses for the other types of controllers. 

• Integral action, which is present in PI and PID controllers, eliminates offset. 

• The addition of derivative action speeds up the response by contributing to 
the  controller output a component of the signal that is proportional to the 
rate of change of  the process variable. 



• For simple, low-order (first- or second-order) processes that 
can tolerate some offset, P or PD control is satisfactory.  

• For processes that cannot tolerate offset and are of low order, 
PI control is required.  

• For processes that are of high order (those with transport lag 
or many first-order lags in series), PID control is needed to 
prevent large overshoot and long settling time.  

• There is probably little justification to select a P or PD 
controller for most processes.  

• The PI controller is often the choice because it eliminates 
offset and requires only two parameter adjustments.  

• Tuning a PID controller is more difficult because three 
parameters must be adjusted.  

• The presence of derivative action can also cause the controller 
output to be very jittery if there is much noise in the signals. 



Criteria for Good Control 
• We now turn our attention to some of the criteria for good control 

that are used to judge whether a control system is well tuned. 
• For example, a response that gives minimum overshoot and ¼ decay 

ratio is often considered as a satisfactory response.  
• In many cases, tuning is done by trial and error until such a response 

is obtained.  
• To compare different responses that use different sets of controller 

parameters, a criterion that reduces the entire response to a single 
number, or a figure of merit, is desirable.  

• The figure of merit provides a means  of “keeping score” for the 
different control parameters, and as we shall see, the low “score” 
generally wins. 

• It is dangerous, however, to rely solely on the score to determine the 
best choice for the control parameters.  

• The control system designer should examine the nature of the 
response in conjunction with the requirements for the process to 
determine the “best” choice of settings. 
 



• One criterion that is often used to evaluate a response of a control system 
is the integral of the square of the error (ISE) with respect to time.  

• The definition of ISE is as follows: 

• Integral of the square of the error (ISE) 

   

where e is the usual error (i.e., set point – control variable).  
For a stable system for which  there is no offset [i.e., e(∞) = 0], 
 produces a single number as a figure of merit. 
The objective of the designer is to obtain the minimum value of ISE by proper choice 
of control parameters.  
A response that has large errors and persists for a long time will produce a large ISE.  
For the cases of P and PD control, where offset occurs, the integral given by Eq. does 
not converge.  
In these cases, one can use a modified integr and, which replaces the error  
r(t)-  c(t) by c(∞) - c(t). 
 Since c(∞) - c(t) does approach zero as t goes to infinity, the integral will converge 
and serve as a figure of merit. 



Two other criteria often used in process control are defined as 
follows: 

• Integral of the absolute value of error (IAE) 

 
•   Integral of time-weighted absolute error (ITAE) 

Each of the three figures of merit, given by Eqs. has different 
purposes.  
The ISE will penalize (i.e., increase the value of ISE) the response 
that has large errors, which usually occur at the beginning of a 
response, because the error is squared.  
The ITAE will penalize a response that has errors that persist for a  
long time.  
The IAE will be less severe in penalizing a response for large errors 
and treat all errors (large and small) in a uniform manner. 
  



• The ISE figure of merit is often used in optimal control theory 
because it can be used more easily in mathematical 
operations (e.g., differentiation) than the figures of merit, 
which use the absolute value of error. 

•  In applying the tuning rules to be discussed in the next 
section, these figures of merit can be used in comparing 
responses that are obtained with different tuning rules. 

 



TUNING RULES 
 Ziegler-Nichols (Z-N) Rules 

• After the process reaches steady state at the normal level of 
operation, remove the integral and derivative modes of the 
controller, leaving only proportional control. 

• On some PID controllers, this requires that the integral time τI be 
set to its maximum value and the derivative time τ D to its minimum 
value.  

• On computer-based controllers, the integral and derivative modes 
can be removed completely from the controller. 

• Select a value of proportional gain Kc, disturb the system, and 
observe the transient response.  

• Select a higher value of Kc and again observe the response of the 
system.  

• Continue increasing the gain in small steps until the response first 
exhibits a sustained oscillation. 

• The value of gain and the period of oscillation that correspond to 
the sustained oscillation are the ultimate gain Kcu and the ultimate 
period Pu. 



• From the values of Kcu and Pu found in step 2, use the Ziegler-
Nichols rules given In Table to determine controller settings 
(Kc, I,  D).  

• Fine-tuning of the controller settings is usually required to get 
an improved control response. 



• This method was proposed by Cohen and Coon (1953) and is 
often used as an alternative to the Z-N method 

• The method of tuning to be discussed is an open-loop 
method, in which the control action is removed from the 
controller by placing it in manual mode.  

• The open-loop transient is induced by a step change in the 
signal to the valve. 

 

Cohen and Coon (C-C) Rules 



• Figure shows a typical control loop in which the control 
action is removed and the loop opened for the purpose 
of introducing a step change (M/s) to the valve.  

• The step response is recorded at the output of the 
measuring element.  

• The step change to the valve is conveniently provided 
by the output from the controller, which is in manual 
mode.  

• The response of the system (including the valve, 
process, and measuring element) is called the process 
reaction curve; exhibits an S shape 

• After we present the Cohen and Coon method of 
tuning, The basis for their recommendations will be 
discussed. 

• The C-C method is summarized in the following steps: 
 



1. After the process reaches 
steady state at the normal level 
of operation, switch the 
controller to manual.   

In a modern controller, the controller 
output will remain at the same value 
after switching as it had before 
switching.  

(This is called “bumpless” transfer.) 

2. With the controller in manual, 
introduce a small step change in the 
controller output that goes to the 
valve and record the transient, which 
is the process reaction curve  

 

3. Draw a straight line tangent to the curve at the point of inflection. 
 The intersection of the tangent line with the time axis is the apparent transport 
lag Td; the apparent first-order time constant T is obtained from 
 



where Bu is the ultimate value of B at large t and S is the slope of the 
tangent line.  
The steady-state gain that relates B to M in Fig. 

4. Using the values of Kp, T, and Td from 
step 3, the controller settings are found 
from the relations given in Table. 
• All the controller settings are a 

function of the dimensionless group 
Td /T, the ratio of the apparent 
transport lag to the apparent time 
constant. 

• Also Kc is inversely proportional to Kp. 
• Their computations required that the 

response have 1/ 4decay ratio, 
minimum offset, minimum area 
under the load-response curve, and 
other favorable properties. 

The attempt to model the process reaction curve by the method shown in Fig. is 
crude and does not give a very good fit. Finding the point of inflection and drawing a 
tangent line at this point are quite difficult, especially if the data for the process 
reaction curve are not accurate and if they scatter. 



A better method for fitting the process reaction curve to a first-order with 
transport lag model is to perform a least-squares fit of the data. Some computer 
software, such as the LOOP-PRO package (see www.controlstation.com), provide an 
easy means of performing the fitting process.  
The rationale for the C-C tuning method begins with the representation of the  
S-shaped process reaction curve by a first-order with transport lag mode  

• Thus 

 

• To understand the basis for the 
graphical procedure, consider the 
response of the transfer function of 
Eq. to a step change in input. 

•  After t = Td, the response is a first 
order response. 

•  The point of inflection of the curve 
occurs at t = Td, and the slope of the 
tangent line at this point is related to  
the time constant by the relation 



  


