CHAPTER 3

INVERSION BY PARTIAL FRACTIONS



* We now wish to develop methods for inverting the transforms to obtain the
solution in the time domain

* The equations to be solved are all of the general form

d"x d" 1y dx
F + an—1 o + -0+ HIE + apx = r(?)

dn

* The unknown function of time is x (t), and a,,,a, .;, ..., a,, ay are
constants.

The given function r (t) is called the forcing function.

In addition, for all problems of interest in control system analysis, the initial
conditions are given.

In other words, values of x, dx / dt, ..., d"-1x / dt"! are specified at time O.
The problem is to determine x (t) for all t> 0.



PARTIAL FRACTIONS

Application of the Laplace transform yields

1

sx(s) + x(s) = —

S

1
x(s) =
(5) s(s +1)
The theory of partial fractions enables us to write this as
A =1
x(s) = ! 4 + B

s(s +1) s s+1 = —1

Now that we’ve found 4 and B, we have

x@) =1—¢"



3 2
E+2dx—{hf—Z:ﬁf=4+¢ezjr

dt’ di*  dt
x(0) =1 x(0) =0 x"(0) = -1

Taking the Laplace transform of both sides yields

[SS‘Y(S) - 52 + l:l + 2[32:{'(5) — S] — [S.Y(S) — 1] — 21.(3) _ E n 1

s s — 2

Solving algebraically for x (s), we find
st —6s* +9s — 8
s(s — 2)(s® + 25 — 5 — 2)

The cubic in the denominator may be factored, and x (S) Is
expanded Iin partial fractions.

x(s) =

s? —6s° +9s — 8 A B C D E
x(s) = = — + + + +
ss —2)(s +D(s + 2)(s — 1) s s—2 s+1 s+2 s-—-1

To find A, multiply both sides of Eq. by s and then set s= 0;
The result is



—8 B
1= 00y

To determine Multiply Eq. (3.8) by and set s to Result
B s — 2 2 B = 112
C s+ 1 —1 Cc = 1%
D s+ 2 —2 D = _1%2
E s — 1 1 E = 23

Accordingly, the solution to the problem is

_ 12t 11—t _ 17 =2t , 2t
x(t) = =2 + 57 + Fe 7€ + ge

A comparison between this method and the classical
method, 3 2 _
s+ 25" —s—2=10

the roots 1, 2, and 1. Thus, the complementary solution
IS
xc(7) = Cie™" + Cztr::*_zr + Caé’



Inversion of a transform that has complex roots in the denominator

2
LGP L. P
dt dt

x(0) =0 x'(0) =0
Application of the Laplace transform yields

2
¥l = 5(52 + 25 + 2)
The quadratic term in the denominator may be factored by use of the
guadratic formula.
The roots are found to be - 1- jand -1+ |.
If we use these complex roots in the partial fraction expansion, the
algebra can get quite tedious

2 A Bs + C
x(s) = — = —+
s(s® + 25 + 2) s s+ 25+ 2
Note that the second term of the expansion has the unfactored
guadratic in the denomiznator.

4= =1
0+ 20) + 2




x(s)

x(s) = = —

1

A

2 1 Bs + C
S

2 = -t 3
s(s® + 25 + 2) s° 4+ 25 + 2

2 = 5% + 25 + 2 + Bs® + Cs
B+Ds*?+@2+C)s +2 =2

s B+1=0 B =-1
ss 2+C=0 C =-2

(s) 1 s+ 2
X)) = - -
s st 425+ 2
x(3)=1— S+22
s (s+D°+1
s+D+1 _ 1  s+1 1
G+D2+12 s (+D2+12 (s+1%+1?

x(f) =1 —¢e"(cos ¢ + sin 7)




In the next example, an exceptional case is considered; the denominator of
X (S) has repeated roots.

Inversion of a transform with repeated roots

3 2
d;r_l_?;dzx _I_de =1
dt dt dt
x(0) = x(0) = x”(0) =0
1

3(33 + 3s% + 35 + l)

x(s) =

1 A B C D
s(s + 1) s (s +1) (s +1) s +1

As In the previous cases, to determine A, multiply both sides by s and then

set s to zero. This yields A1

Multiplication of both sides of Eq. by (s + 1) 3results
In

+ 3
1_4s+1D + B+ C(s +1) + D(s +1)2
5 5



Setting s= -1 in Eqg. gives
B = —

Having found A and B, we introduce these values into Eq. and place
the right side of the equation over a common denominator;

1 s+ 17 =5+ Csls +1) + Ds(s + 1)
s(s +1)° s(s +1)3
1 1+ DsP+@B+C+2D)s" +(@2+C+ D)s+1

s(s + 1)° - sis +1)3

1=01+D)s>+@B+C+2D)s*> +2+C + D)s +1

1+D =0 Solving these equations
3+C+2D =0 gives
2+C+D =0 C=-1andD=-1.

The final result is then
2
1 1 1 1 .r(r)—l—e'f[%+r+1]

TG+ s+ s+1

x(s) =



The result of Example may be generalized.

C1 C2 Ch

(S_l_n)n’(s_l_a)n—l"' s+ a

The other constants are determined by the method shown above Example.
These terms lead to the following expression as the inverse transform:

{ C1 a1 C2

n—2 —at
4o 4+ +
. 1 ! N 2 !t Cﬁ—]f C;q e

QUALITATIVE NATURE OF SOLUTIONS

If we are interested only in the form of the solution x (t), this information may be
obtained directly from the roots of the denominator of x (s).

d*x  2'dx )
. + - + 2x = 2 x(0) = x"(0) =0

x(s) = — : =£+ B - + ¢ _
3(5 +25+2) s s+1+ s+1—




Since the roots of the quadratic term are -1+ |,

X (t) must contain terms of the form et ( C, cost+ C, sint)

Alternatively, interested in the behavior of x (t) ast =2 <.

It is clear that the terms involving sin and cos vanish because of the factor e™.
Therefore, x (t) ultimately approaches the constant, which by inspection must be
unity.

The gqualitative nature of the solution x (t) can be related to the location of the
roots of the denominator of x (s) in the complex plane.

These roots are the roots of the characteristic equation.



Nature of terms in the solution x (t) based on roots Iin
the denominator of X(s)

Roots in denominator of X(s) Terms in x(f) for (=0

51 Cre” '
* —

52, 52 e~ (C1 cos bat + C2 sin bat)
* &

53, 53 Cycos byt + Coysin byt

sS4, 54 ™' (Cy cos byt + C2 sin byt)

55 C1e"’

5B C

If any of these roots are repeated, the term given in Table is multiplied by a power

where r is the number of repetitions of the root and the constants K, K, , ..., K,
can be evaluated by partial fraction expansion.



Location of typical roots of characteristic equation
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Any proper fraction may be resolved into a number of partial fractions subject
to the following rules.

F A A A4
(s) _ L 2 2 Lo+ n
(as + b)" as + b (as + b) (as + b)"
root repea{ed n times there are n partial fractions in expansion
F(s) B As + B N
---(asz + bs + ¢)--- 5?52 + bs + ¢

numerator is polynomial of one
less degree than denominator

F(s) _
. (as® + bs + c)"---
yielﬁs—}
Ais + B Ass + B Ays + B
2l 1 + 22 2 2+___ + zn n -
as®“ + bs +c¢ (as® + bs + ¢) (as® + bs + c¢)

W

n terms in expansion



FINAL-VALUE THEOREM

* If f(s)Isthe Laplace transform of f (t) , then

lim /()] = lim[sf(s)]

[—o0

provided that sf(s) does not become infinite for any value of s satisfying Re(s ) 2 0.

), ‘jf “tdr = sf(s) — f(0)

llmj —e_”dr = llm[sf )] — £(0)

s—0

JoLar = limsf )] - £(0)

lim[£(r)] — F(0) = lllﬂ[Sf(S)] — f(0)

[ —poo



 Find the final value of the function x (t) for which the Laplace transform is

1

¥ = 5(53 + 35 + 35 + 1)

* Direct application of the final-value theorem yields

1
lim[x(r)] = lim =1
ram[r( )] SHDSS +SSE + 35 +1

2
x(t) = l—e_r{%-l-f-l-l]

Find the final value of the function x ( t) for which the Laplace
transform is
s —6s* +9s — 8

*s) = s(s — 2) (33 + 257 — 5 — 2)




st —6s* + 95 — 8
(s + (s + 2)(s — (s — 2)

sx(s) =

Since this becomes infinite for s= 1 and s = 2, the conditions of the theorem
are
not satisfied.

Note that we
x(f) = =2 + iezr + Ee_r — EE-Er + %e
12 3 12

INITIAL-VALUE THEOREM

r ind that

lim /()] = lim [5f (s)]

5—3oo

Find the initial value x(0) of the function that has the transform

s —6s? +95 — 8

xis) = s(s — 2](53 + 25 — 5 — 2]




s} 65t + 95— 8

sx(s) =
st — 552 + 4
sx(s) = 1 — 6/s® + 9/s% — 8/s"
. 1 — 5/5% + 4/s*
X (0)= 1

TRANSLATION OF TRANSFORM
If L{f(t)} = f(s), then

L™ f(D)} = f(s + a)
Proof

L ()} = j:f{;]e‘“fe‘” dt = j:f(r}e‘f”““ dt = f(s + a)

Find L{e™ ™ cos kt}. Since

5
52 +k2

L{cos kt} =



« A primary use for this theorem is in the inversion of transforms. For
example, by using this theorem the transform

1
(s + a}z

x(s) =

as L{} = x() = e
5

TRANSLATION OF FUNCTION
FL{f(t)} = f(s),then

L{f(t — 10)} = e~ £(s) !
f(r) =0 fort < 0

A1)
Sfle=tg)

Proof, o o t—

L{f(t — 10)} j; £t — 10)e™ dr

= o0 r‘ it = 10)e™ "0 d(r — 19)
L



TRANSFORM OF AN INTEGRAL
< IFL{f(t)}=1f(s), then

[, rar} = L2

5

* This important theorem is closely related to the theorem on differentiation.

 Since the operations of differentiation and integration are inverses of each
other when applied to the time functions,

<[ rwar = [ Lar = 10

« Itis to be expected that these operations when applied to the transforms
will also be inverses.

T S576) = 109

5



Solve the following equation for x (t).

dx t
— = Jyx0dr 1

x(0) = 3
x(s)

1
S:r(j)—3=———2
5 5

3% — 1 3% — 1

x(s) = =

s(s2 =1) sl + D6 — 1)

.r(s)=1+ L + L
s s+1 s—1

x(t) =1+e " +¢



Relationship between unit step and unit impulse: Jc'i' (1)dt = ul(t)
0

du(t) _
" (1)

and

Use the theorem for the transform of an integral to determine the transform of
the unit-step function if we know that L{d (t)} =1

u(t) = [ 5(¢) dt, then
L{u()} = L{jﬁ(r)dt} = %L{é’(r)} = %
0

cross check: since we know that du (t)/ dt =d (t),
then
du(t)

L{o(n)} = L{ -

} = sL{u(?)} = s - % =1



CUSTOM INPUTS

« We can produce “custom” input signals by appropriately constructing them
using standard input signals.

* These custom inputs are frequently useful when we analyze a process

disturbance.
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We can consider this input signal to be
constructed from several individual

‘pieces,”

f(t) = ult —1) — (t — 3u(t — 3) + (t — Dul(t — 4)
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Then add this piece.
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