CHAPTER 3

INVERSION BY PARTIAL FRACTIONS

- We now wish to develop methods for inverting the transforms to obtain the solution in the time domain
- The equations to be solved are all of the general form

$$
a_{n} \frac{d^{n} x}{d t^{n}}+a_{n-1} \frac{d^{n-1} x}{d t^{n-1}}+\cdots+a_{1} \frac{d x}{d t}+a_{0} x=r(t)
$$

- The unknown function of time is $x(t)$, and $a_{n}, a_{n-1}, \ldots, a_{1}, a_{0}$ are constants.
- The given function $r(t)$ is called the forcing function.
- In addition, for all problems of interest in control system analysis, the initial conditions are given.
- In other words, values of $x, d x / d t, \ldots, d^{n-1} x / d t^{n-1}$ are specified at time 0 .
- The problem is to determine $x(t)$ for all $t>0$.

PARTIAL FRACTIONS

$$
\begin{gathered}
\frac{d x}{d t}+x=1 \\
x(0)=0
\end{gathered}
$$

Application of the Laplace transform yields

$$
\begin{gathered}
s x(s)+x(s)=\frac{1}{s} \\
x(s)=\frac{1}{s(s+1)}
\end{gathered}
$$

The theory of partial fractions enables us to write this as

$$
x(s)=\frac{1}{s(s+1)}=\frac{A}{s}+\frac{B}{s+1}
$$

$$
\begin{gathered}
A=1 \\
B=-1
\end{gathered}
$$

Now that we've found A and B, we have

$$
\begin{gathered}
x(s)=\frac{1}{s(s+1)}=\frac{1}{s}-\frac{1}{s+1} \\
x(t)=1-e^{-t}
\end{gathered}
$$

$$
\begin{aligned}
& \frac{d^{3} x}{d t^{3}}+2 \frac{d^{2} x}{d t^{2}}-\frac{d x}{d t}-2 x=4+e^{2 t} \\
& x(0)=1 \quad x^{\prime}(0)=0 \quad x^{\prime \prime}(0)=-1
\end{aligned}
$$

Taking the Laplace transform of both sides yields

$$
\left[s^{3} x(s)-s^{2}+1\right]+2\left[s^{2} x(s)-s\right]-[s x(s)-1]-2 x(s)=\frac{4}{s}+\frac{1}{s-2}
$$

Solving algebraically for $x(s)$, we find

$$
x(s)=\frac{s^{4}-6 s^{2}+9 s-8}{s(s-2)\left(s^{3}+2 s^{2}-s-2\right)}
$$

The cubic in the denominator may be factored, and $x(s)$ is expanded in partial fractions.

$$
x(s)=\frac{s^{4}-6 s^{2}+9 s-8}{s(s-2)(s+1)(s+2)(s-1)}=\frac{A}{s}+\frac{B}{s-2}+\frac{C}{s+1}+\frac{D}{s+2}+\frac{E}{s-1}
$$

To find A, multiply both sides of Eq. by s and then set $s=0$;
The result is

$$
A=\frac{-8}{(-2)(1)(2)(-1)}=-2
$$

To determine	Multiply Eq. (3.8) by	and set s to	Result
B	$s-2$	2	$B=1 / 12$
C	$s+1$	-1	$C=11 / 3$
D	$s+2$	-2	$D=-17 / 12$
E	$s-1$	1	$E=2 / 3$

Accordingly, the solution to the problem is

$$
x(t)=-2+\frac{1}{12} e^{2 t}+\frac{11}{3} e^{-t}-\frac{17}{12} e^{-2 t}+\frac{2}{3} e^{t}
$$

A comparison between this method and the classical method, $\quad s^{3}+2 s^{2}-s-2=0$
the roots 1,2 , and 1 . Thus, the complementary solution is

$$
x_{c}(t)=C_{1} e^{-t}+C_{2} e^{-2 t}+C_{3} e^{t}
$$

Inversion of a transform that has complex roots in the denominator

$$
\begin{aligned}
& \frac{d^{2} x}{d t^{2}}+2 \frac{d x}{d t}+2 x=2 \\
& x(0)=0 \quad x^{\prime}(0)=0
\end{aligned}
$$

Application of the Laplace transform yields

$$
x(s)=\frac{2}{s\left(s^{2}+2 s+2\right)}
$$

The quadratic term in the denominator may be factored by use of the quadratic formula.
The roots are found to be $-1-j$ and $-1+j$.
If we use these complex roots in the partial fraction expansion, the algebra can get quite tedious

$$
x(s)=\frac{2}{s\left(s^{2}+2 s+2\right)}=\frac{A}{s}+\frac{B s+C}{s^{2}+2 s+2}
$$

Note that the second term of the expansion has the unfactored quadratic in the denominator.

$$
A=\frac{2}{0+2(0)+2}=1
$$

$$
\begin{aligned}
& x(s)=\frac{2}{s\left(s^{2}+2 s+2\right)}=\frac{1}{s}+\frac{B s+C}{s^{2}+2 s+2} \\
& 2=s^{2}+2 s+2+B s^{2}+C s \\
& (B+1) s^{2}+(2+C) s+2=2 \\
& s^{2}: B+1=0 \quad B=-1 \\
& s: \quad 2+C=0 \quad C=-2 \\
& x(s)=\frac{1}{s}-\frac{s+2}{s^{2}+2 s+2} \\
& x(s)=\frac{1}{s}-\frac{s+2}{(s+1)^{2}+1} \\
& x(s)=\frac{1}{s}-\frac{(s+1)+1}{(s+1)^{2}+1^{2}}=\frac{1}{s}-\frac{s+1}{(s+1)^{2}+1^{2}}-\frac{1}{(s+1)^{2}+1^{2}} \\
& \left.x(t)=1-e^{-a t} \sin (k t)\right\}=\frac{k}{(s+a)^{2}+k^{2}} \\
& x\left\{e^{-a t} \cos (k t)\right\}=\frac{s+a}{(s+a)^{2}+k^{2}} \\
& x+\sin t)
\end{aligned}
$$

In the next example, an exceptional case is considered; the denominator of $x(s)$ has repeated roots.

Inversion of a transform with repeated roots

$$
\begin{aligned}
& \frac{d^{3} x}{d t^{3}}+\frac{3 d^{2} x}{d t^{2}}+\frac{3 d x}{d t}+x=1 \\
& x(0)=x^{\prime}(0)=x^{\prime \prime}(0)=0 \\
& x(s)=\frac{1}{s\left(s^{3}+3 s^{2}+3 s+1\right)} \\
& x(s)=\frac{1}{s(s+1)^{3}}=\frac{A}{s}+\frac{B}{(s+1)^{3}}+\frac{C}{(s+1)^{2}}+\frac{D}{s+1}
\end{aligned}
$$

As in the previous cases, to determine A, multiply both sides by s and then set s to zero. This yields

$$
A=1
$$

Multiplication of both sides of Eq. by $(s+1)^{3}$ results
in

$$
\frac{1}{s}=\frac{A(s+1)^{3}}{s}+B+C(s+1)+D(s+1)^{2}
$$

Setting $s=-1$ in Eq. gives

$$
B=-1
$$

Having found A and B, we introduce these values into Eq. and place the right side of the equation over a common denominator;

$$
\begin{aligned}
& \frac{1}{s(s+1)^{3}}=\frac{(s+1)^{3}-s+C s(s+1)+D s(s+1)^{2}}{s(s+1)^{3}} \\
& \frac{1}{s(s+1)^{3}}=\frac{(1+D) s^{3}+(3+C+2 D) s^{2}+(2+C+D) s+1}{s(s+1)^{3}} \\
& 1=(1+D) s^{3}+(3+C+2 D) s^{2}+(2+C+D) s+1 \\
& 1+D=0 \\
& 3+C+2 D=0 \\
& 2+C+D=0 \\
& \text { Solving these equations } \\
& \text { gives } \\
& C=-1 \text { and } D=-1 \text {. }
\end{aligned}
$$

The final result is then

$$
x(s)=\frac{1}{s}-\frac{1}{(s+1)^{3}}-\frac{1}{(s+1)^{2}}-\frac{1}{s+1} \quad x(t)=1-e^{-t}\left(\frac{t^{2}}{2}+t+1\right)
$$

The result of Example may be generalized.

$$
\frac{C_{1}}{(s+a)^{n}}, \frac{C_{2}}{(s+a)^{n-1}}, \ldots, \frac{C_{n}}{s+a}
$$

The other constants are determined by the method shown above Example. These terms lead to the following expression as the inverse transform:

$$
\left[\frac{C_{1}}{(n-1)!} t^{n-1}+\frac{C_{2}}{(n-2)!} t^{n-2}+\cdots+C_{n-1} t+C_{n}\right] e^{-a t}
$$

QUALITATIVE NATURE OF SOLUTIONS

If we are interested only in the form of the solution $x(t)$, this information may be obtained directly from the roots of the denominator of $x(s)$.

$$
\begin{aligned}
& \frac{d^{2} x}{d t^{2}}+\frac{2^{\prime} d x}{d t}+2 x=2 \quad x(\mathbf{0})=x^{\prime}(0)=0 \\
& x(s)=\frac{2}{s\left(s^{2}+2 s+2\right)}=\frac{A}{s}+\frac{B}{s+1+j}+\frac{C}{s+1-j}
\end{aligned}
$$

- Since the roots of the quadratic term are $-1 \pm j$,
- $x(t)$ must contain terms of the form $e^{-t}\left(C_{1} \cos t+C_{2} \sin t\right)$
- Alternatively, interested in the behavior of $x(t)$ as $t \rightarrow \infty$.
- It is clear that the terms involving sin and cos vanish because of the factor e^{-t}.
- Therefore, $x(t)$ ultimately approaches the constant, which by inspection must be unity.
- The qualitative nature of the solution $x(t)$ can be related to the location of the roots of the denominator of $x(s)$ in the complex plane.
- These roots are the roots of the characteristic equation.

Nature of terms in the solution $x(t)$ based on roots in the denominator of $X(s)$

Roots in denominator of $\boldsymbol{X}(\boldsymbol{s})$	Terms in $\boldsymbol{X}(\boldsymbol{t})$ for $\boldsymbol{t}>\mathbf{0}$
s_{1}	$C_{1} e^{-a_{1} t}$
s_{2}, s_{2}^{*}	$e^{-a_{2} t}\left(C_{1} \cos b_{2} t+C_{2} \sin b_{2} t\right)$
s_{3}, s_{3}^{*}	$C_{1} \cos b_{3} t+C_{2} \sin b_{3} t$
s_{4}, s_{4}^{*}	$e^{a_{4} t}\left(C_{1} \cos b_{4} t+C_{2} \sin b_{4} t\right)$
s_{5}	$C_{1} e^{a_{5} t}$
s_{6}	C_{1}

If any of these roots are repeated, the term given in Table is multiplied by a power series in t

$$
K_{1}+K_{2} t+K_{3} t^{2}+\cdots+K_{r} t^{r-1}
$$

where r is the number of repetitions of the root and the constants $K_{1}, K_{2}, \ldots, K_{r}$ can be evaluated by partial fraction expansion.

Location of typical roots of characteristic equation

Any proper fraction may be resolved into a number of partial fractions subject to the following rules.

$$
\frac{F(s)}{\underbrace{(a s+b)^{n}}_{\text {root repeated } n \text { times }}}=\underbrace{\frac{A_{1}}{a s+b}+\frac{A_{2}}{(a s+b)^{2}}+\cdots+\frac{A_{n}}{(a s+b)^{n}}}_{\text {there are } n \text { partial fractions in expansion }}
$$

$$
\begin{aligned}
& \frac{F(s)}{\cdots\left(a s^{2}+b s+c\right) \cdots}=\underbrace{\frac{A s^{2}+b s+c}{}}_{\begin{array}{c}
\text { numerator is polynomial of one } \\
\text { less degree than denominator }
\end{array}}+\cdots \\
& \frac{F(s)}{\cdots \underbrace{\left(a s^{2}+b s+c\right)^{n}}_{\text {yields }} \cdots}= \\
& \underbrace{\frac{A_{1} s+B_{1}}{a s^{2}+b s+c}+\frac{A_{2} s+B_{2}}{\left(a s^{2}+b s+c\right)^{2}}+\cdots+\frac{A_{n} s+B_{n}}{\left(a s^{2}+b s+c\right)^{n}}+\cdots}_{n \text { terms in exbansion }}
\end{aligned}
$$

FINAL-VALUE THEOREM

- If $f(s)$ is the Laplace transform of $f(t)$, then

$$
\lim _{t \rightarrow \infty}[f(t)]=\lim _{s \rightarrow 0}[s f(s)]
$$

provided that $s f(s)$ does not become infinite for any value of s satisfying $\operatorname{Re}(s) \geq 0$.

$$
\int_{0}^{\infty} \frac{d f}{d t} e^{-s t} d t=s f(s)-f(0)
$$

$$
\begin{gathered}
\lim _{s \rightarrow 0} \int_{0}^{\infty} \frac{d f}{d t} e^{-s t} d t=\lim _{s \rightarrow 0}[s f(s)]-f(0) \\
\int_{0}^{\infty} \frac{d f}{d t} d t=\lim _{s \rightarrow 0}[s f(s)]-f(0) \\
\lim _{t \rightarrow \infty}[f(t)]-f(0)=\lim _{s \rightarrow 0}[s f(s)]-f(0)
\end{gathered}
$$

- Find the final value of the function $x(t)$ for which the Laplace transform is

$$
x(s)=\frac{1}{s\left(s^{3}+3 s^{2}+3 s+1\right)}
$$

- Direct application of the final-value theorem yields

$$
\begin{gathered}
\lim _{t \rightarrow \infty}[x(t)]=\lim _{s \rightarrow 0} \frac{1}{s^{3}+3 s^{2}+3 s+1}=1 \\
x(t)=1-e^{-t}\left(\frac{t^{2}}{2}+t+1\right)
\end{gathered}
$$

Find the final value of the function $x(t)$ for which the Laplace transform is

$$
x(s)=\frac{s^{4}-6 s^{2}+9 s-8}{s(s-2)\left(s^{3}+2 s^{2}-s-2\right)}
$$

$$
s x(s)=\frac{s^{4}-6 s^{2}+9 s-8}{(s+1)(s+2)(s-1)(s-2)}
$$

Since this becomes infinite for $s=1$ and $s=2$, the conditions of the theorem are not satisfied.
Note that w ϵ

$$
x(t)=-2+\frac{1}{12} e^{2 t}+\frac{11}{3} e^{-t}-\frac{17}{12} e^{-2 t}+\frac{2}{3} e^{t} \text { and that }
$$

INITIAL-VALUE THEOREM

$$
\lim _{x \rightarrow 0}[f(t)]=\lim _{s \rightarrow \infty}[s f(s)]
$$

Find the initial value $x(0)$ of the function that has the transform

$$
x(s)=\frac{s^{4}-6 s^{2}+9 s-8}{s(s-2)\left(s^{3}+2 s^{2}-s-2\right)}
$$

$$
\begin{aligned}
& s x(s)=\frac{s^{4}-6 s^{2}+9 s-8}{s^{4}-5 s^{2}+4} \\
& s x(s)=\frac{1-6 / s^{2}+9 / s^{3}-8 / s^{4}}{1-5 / s^{2}+4 / s^{4}} \\
& X(0)=1
\end{aligned}
$$

TRANSLATION OF TRANSFORM

$$
\text { If } L\{f(t)\}=f(s) \text {, then }
$$

$$
L\left\{e^{-a t} f(t)\right\}=f(s+a)
$$

Proof

$$
L\left\{e^{-a t} f(t)\right\}=\int_{0}^{\infty} f(t) e^{-a t} e^{-s t} d t=\int_{0}^{\infty} f(t) e^{-(s+a) t} d t=f(s+a)
$$

Find $L\left\{e^{-a t} \cos k t\right\}$. Since

$$
L\{\cos k t\}=\frac{s}{s^{2}+k^{2}}
$$

- A primary use for this theorem is in the inversion of transforms. For example, by using this theorem the transform

$$
x(s)=\frac{1}{(s+a)^{2}}
$$

$$
\text { as } \quad L\{t\}=\frac{1}{s^{2}} \quad x(t)=t e^{-a t}
$$

TRANSLATION OF FUNCTION

$$
\begin{aligned}
& \text { If } L\{\boldsymbol{f}(\boldsymbol{t})\}=\boldsymbol{f}(\boldsymbol{s}) \text {, then } \\
& L\left\{f\left(t-t_{0}\right)\right\}=e^{-s t_{0}} f(s) \\
& f(t)=0 \text { for } t<0
\end{aligned}
$$

Proof.

$$
\begin{aligned}
L\left\{f\left(t-t_{0}\right)\right\} & =\int_{0}^{\infty} f\left(t-t_{0}\right) e^{-s t} d t \\
& =e^{-s t_{0}} \int_{-t_{0}}^{\infty} f\left(t-t_{0}\right) e^{-s\left(t-t_{0}\right)} d\left(t-t_{0}\right)
\end{aligned}
$$

TRANSFORM OF AN INTEGRAL

- If $L\{f(t)\}=f(s)$, then

$$
L\left\{\int_{0}^{t} f(t) d t\right\}=\frac{f(s)}{s}
$$

- This important theorem is closely related to the theorem on differentiation.
- Since the operations of differentiation and integration are inverses of each other when applied to the time functions,

$$
\frac{d}{d t} \int_{0}^{t} f(t) d t=\int_{0}^{t} \frac{d f}{d t} d t=f(t)
$$

- It is to be expected that these operations when applied to the transforms will also be inverses.

$$
s \frac{f(s)}{s}=\frac{1}{s} s f(s)=f(s)
$$

Solve the following equation for $x(t)$.

$$
\begin{gathered}
\frac{d x}{d t}=\int_{0}^{t} x(t) d t-t \\
x(0)=3 \\
s x(s)-3=\frac{x(s)}{s}-\frac{1}{s^{2}} \\
x(s)=\frac{3 s^{2}-1}{s\left(s^{2}-1\right)}=\frac{3 s^{2}-1}{s(s+1)(s-1)} \\
x(s)=\frac{1}{s}+\frac{1}{s+1}+\frac{1}{s-1} \\
x(t)=1+e^{-t}+e^{t}
\end{gathered}
$$

Relationship between unit step and unit impulse:

$$
\text { and } \quad \frac{d u(t)}{d t}=\delta(t)
$$

Use the theorem for the transform of an integral to determine the transform of the unit-step function if we know that $L\{d(t)\}=1$

$$
\begin{aligned}
u(t) & =\int^{\infty} \delta(t) d t \text { then } \\
L\{u(t)\} & =L\left\{\int_{0}^{\infty} \delta(t) d t\right\}=\frac{1}{s} L\{\delta(t)\}=\frac{1}{s}
\end{aligned}
$$

cross check: since we know that $d u(t) / d t=d(t)$, then

$$
L\{\delta(t)\}=L\left\{\frac{d u(t)}{d t}\right\}=s L\{u(t)\}=s \cdot \frac{1}{s}=1
$$

CUSTOM INPUTS

- We can produce "custom" input signals by appropriately constructing them using standard input signals.
- These custom inputs are frequently useful when we analyze a process disturbance.

We can consider this input signal to be constructed from several individual "pieces,"

$$
f(t)=u(t-1)-(t-3) u(t-3)+(t-4) u(t-4)
$$

Start with this piece . .

Add this piece .

Then add this piece.

