
 
 
 
 

       

 
 

RESPONSE OF FIRST-ORDER SYSTEMS 
  

     CHAPTER 4 
 
 



TRANSFER FUNCTION  

• MERCURY THERMOMETER 

Transfer function for a first-order system by considering the unsteady-state 
behavior of an ordinary mercury-in-glass thermometer.  
 



• Consider the thermometer to be located in a flowing stream of fluid for which  
the temperature x varies with time.  

• Our problem is to calculate the response or the time variation of the thermometer reading y 
for a particular change in x.  

• In order that the result of the analysis of the thermometer be general and therefore 
applicable to other first-order systems. 

• Symbols x and y have been selected to represent surrounding temperature and 
thermometer reading, respectively. 
 

• The following assumptions will be used in this analysis: 

  
      1. All the resistance to heat transfer resides in the film surrounding the bulb 

  (i.e., the resistance offered by the glass and mercury is neglected).  

      2. All the thermal capacity is in the mercury.  

   Furthermore, at any instant the mercury assumes a uniform temperature throughout.  
 
3. The glass wall containing the mercury does not expand or contract during the transient 
response.  

 (In an actual thermometer, the expansion of the wall has an additional effect on the response of the 
thermometer reading. The glass initially expands and the cavity containing the mercury grows, resulting in a 
mercury reading that initially falls. Once the mercury warms and expands, the reading increases. This is an 
example of an inverse response. Inverse responses will be discussed in greater detail later. )  
 



• It is assumed that the thermometer is initially at steady state. This means 
that, before time 0, there is no change in temperature with time.  

• At time 0, the thermometer will be subjected to some change in the 
surrounding temperature x (t).  
 By applying the unsteady-state energy balance  
 
 

Prior to the change in x, the thermometer is at steady state and the derivative dy/dt 
is zero.  
 



  
• Simply states that ys=  xs, or the thermometer reads the true, bath 

temperature.  

 
 

If we define the deviation variables to be the differences between the 

variables  
and their steady-state values  
 

The parameter t is called the time constant of the system and has the units 

of time.  
From above, we have  
 



• X is the input to the system (the bath temperature) and Y is the output from 
the system (the indicated thermometer temperature).  
Taking the Laplace transform of Eq. (4.5) gives  

 

Initial conditions because the initial values of X and Y are zero.  

Since we start from steady state, 

  

Y (0) must be zero, 
 and  X(0) is zero for the same reason. 
 

The expression on the right side of Eq. is called the transfer function of the 

system.  

It is the ratio of the Laplace transform of the deviation in thermometer reading 

(output) 

to the Laplace transform of the deviation in the surrounding temperature 
(input).  
 



• Any physical system for which the relation between Laplace transforms of input  

and output deviation variables is of the form given by Eq. is called a first-order system.  

• Synonyms for first-order systems are first-order lag and single exponential  

stage.  

• Linear differential equation, Eq. discuss a number of other physical systems that are first-

order.  

To summarize the procedure for determining the transfer function for a process: 

Step 1. Write the appropriate balance equations (usually mass or energy balances  

 or a chemical process).  

Step 2. Linearize terms if necessary 

Step 3. Place balance equations in deviation variable form.  

Step 4. Laplace-transform the linear balance equations.  

Step 5. Solve the resulting transformed equations for the transfer function, the  

 output divided by the input.  

 

 



Standard Form for First-Order Transfer Functions 
• The general form for a first-order system is  

 

 

• where y is the output variable and x ( t) is the input forcing function. The 
initial conditions are  
 

• Introducing deviation variables gives  
 
 

 

We obtain the standard first-order transfer 
function  
 



The important characteristics of the standard form are as follows: 

 
• The denominator must be of the form ( s  +1).  
• The coefficient of the s term in the denominator is the system time constant 
.  
• The numerator is the steady-state gain Kp  
Place the following transfer function in standard first-order form, and identify 
the time constant and the steady state gain.  
 

Rearranging to standard form,  
 

Thus, the time constant is 3, and the steady-state 
gain is 6.  
 



Physical significance of the steady-state gain becomes clear if we let X (s) = 1/ s,  

the unit-step function.  
Then Y(s) is given by  
 

The ultimate value of Y (t) is  t  ∞  
 

Thus the steady-state gain Kp is the steady-state value that the system 

attains after being disturbed by a unit-step input.  
It can be obtained by setting s = 0 in the transfer function.  
 



PROPERTIES OF TRANSFER FUNCTIONS.  

• In general, a transfer function relates two variables in a physical process; 

•  one of these is the cause (forcing function or input variable),  

• other is the effect (response or output variable).  

• In terms of the example of the mercury thermometer, the surrounding 
temperature is the cause or input, whereas the thermometer reading is the 
effect or output.  

•  
 

where  

 G (s)  symbol for transfer function  

 X (s)  transform of forcing function or input, in deviation form  
 Y (s)  transform of response or output, in deviation form  
 



• The transfer function completely describes the dynamic characteristics of the 
system.  

• If we select a particular input variation X (t) for which the transform is X (s),  

• The response of the system is simply  

 

• Taking the inverse of  Y (s), we get  Y (t), the response of the system.  

• The transfer function results from a linear differential equation; therefore, the 
principle of superposition is applicable.  

• This means that the transformed response of a system with transfer function G ( s ) 
to a forcing function 

 

Where  X1 and  X2 are particular forcing functions and  a1 and  a2 are constants, is  
 



 

 

 

• where Y1(s) and Y2( s) are the responses to X1 and X2 alone, 
respectively.  
 

• The functional relationship contained in a transfer function is 
often expressed by a block diagram representation,  

 

 

 

 

 

• The transfer function G (s) in the box “operates” on the input 
function X (s) to produce an output function Y (s).  
 



TRANSIENT RESPONSE  

• Let’s explore study the transient response of the first-order 
system to these forcing functions. 

• It is worthwhile to study its response to several common forcing 
functions: step, impulse, ramp, and sinusoidal.  

• These forcing functions have been found to be very useful in 
theoretical and experimental aspects of process control.  

   FORCING FUNCTIONS  
STEP FUNCTION.  

 
 



IMPULSE FUNCTION 

 

 

RAMP FUNCTION 
This function increases linearly with time and is described by the equations  



SINUSOIDAL INPUT 

This function is represented mathematically by the equations 

 

 

 

 

 

where A is the amplitude and w is the radian frequency.  

The radian frequency w is related to the frequency f in cycles per unit time by w 
= 2 p f.  
  
This forcing function forms the basis of an important branch of control theory 
known as  
frequency response. 

 Historically, a large segment of the development of control theory was based 
on frequency-response methods. 



• If a step change of magnitude A is introduced into a first-order system, the 
transform of X (t) is 

 

 
 

• The value of Y (t) reaches 63.2 percent of its ultimate value when the time 

elapsed  

is equal to one time constant t.  

• Time elapsed is 2t, 3t, and 4t, the percent response is 86.5, 95, and 98, 

respectively. 
• Response essentially completed in three to four time constants.  

gives C1  = A 

and C2 = - A.  
 



• A thermometer having a time constant of 0.1 min is at a steady-state 
temperature of 90F  (xs ) .  

• At time t= 0, the thermometer is placed in a temperature bath maintained 
at 100°F. Determine the time needed for the thermometer to read 98°F.  

 

 

• The ultimate thermometer reading will, of course, be 100°F, and the 
ultimate  
value of the deviation variable Y (∞) is 10°F. When the thermometer reads 
98°F,  

 Y ( t )=  8°F.  
 
 

 

The appropriate values of Y, A, and t gives  
 
 
where it is seen that Y/A = 0.8 at t /t = 1.6.  
 



IMPULSE RESPONSE 

• The impulse response of a first-order system will now be developed. 

Anticipating the use of superposition, we consider a unit impulse for 

which the Laplace transform is  

  

 



RAMP RESPONSE  

For a ramp input of x (t) =  bt, where X (s) = b / s2 
the output is  
 

Rearranging and using partial fractions 

yield.  
 



SINUSOIDAL RESPONSE  
Consider a thermometer to be in equilibrium with a temperature bath at 
temperature xs. 

•  At some time t= 0, the bath temperature begins to vary according to the 
relationship  

 
 

This equation can be solved for Y( t) by means of a partial fraction expansion,  
as described  



Another form by using the trigonometric identity  
 

As t  ∞, the first term on the right side of Eq. vanishes and leaves 

only the ultimate periodic solution, which is sometimes called the 
steady-state solution  
 



• For the input forcing function with above Eq. for the ultimate periodic 
response, we see that  
 
 

we always use the term phase angle (ɸ) and interpret whether there is lag 

or lead by the convention. 

If ɸ in Eq. is negative, In terms of a recording of input and output, this 

means that the input peak occurs before the output peak.  

If ɸ is positive in Eq., the system exhibits phase lead, or the output leads 
the input.  
 

Phase lag can never exceed 90° and approaches this value asymptotically.  
 



• The sinusoidal response is interpreted in terms of the mercury 
thermometer by the following example  
 
A mercury thermometer having a time constant of 0.1 min is placed in a 

temperature bath at 100°F and allowed to come to equilibrium with the bath. 

At time t = 0, the temperature of the bath begins to vary sinusoidally about its 

average temperature of 100°F with an amplitude of 2°F. If the frequency of 

oscillation is 10/π cycles/min, plot the ultimate response of the thermometer 

reading as a function of time.  
What is the phase lag?  
 In terms of the symbols used in this chapter  

 



• The amplitude of the response and the phase angle are calculated; thus  
 

The response of the thermometer is 
therefore  
 

To obtain the lag in terms of time rather than angle, we proceed as follows:  

A frequency of 10/π  cycles/min means that a complete cycle (peak to peak) 

occurs in (10/ π ) 1 min.  

Since one cycle is equivalent to 360° and the lag is 63.5°, the time 
corresponding to this lag is  
 



In general, the lag in units of time is given 
by  
 

when f is expressed in degrees.  
 

For all practical purposes this term becomes negligible after a time equal to 

about 3ꞇ.  

If the response were desired beginning from the time the bath temperature 

begins to oscillate, it would be necessary to plot the complete response as 
given by Eq.  
 



Deviation variables:  

The difference between the process system variables and their steady-state 

values. When transfer functions are used, deviation values are always used.  

The convenience and utility of deviation variables lie in the fact that their initial 

values are most often zero.  
 
 




