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EXAMPLES OF FIRST-ORDER SYSTEMS  
 

Liquid Level  
 

Tank of uniform cross sectional area A  

Flow resistance R such as a valve, a pipe, or a 

weir.  

Assume that qo, the volumetric flow rate 

(volume/time)  
related to the head h by the linear relationship  
 

A specially contoured weir, called a Sutro weir, produces a linear head-flow 

relationship.  

Turbulent flow through pipes and valves is generally proportional to h.  

Flow through weirs having simple geometric shapes can be expressed as Khn,  

where K and n are positive constants.  
For example, the flow through a rectangular weir is proportional to h3/2.)  



A time-varying volumetric flow q of liquid of constant density r enters the tank.  
Determine the transfer function that relates head to flow.  

 

Initially, the process is operating at steady state, which means that 
dh/dt=  0  
 

Subtracting Eq.  
 



Define the deviation variables as  
 
  
  

 
Taking the transform  
 

H (0) is zero, therefore the transform of dH/dt is simply sH 
(s)  
 

Rearranged into the standard form of the first-order lag to give  
 

Flow rate Q (t) changes according to a unit-step 
change; thus  
 



Applying the final-value theorem, H(s) gives  
 

and 

combining 



A tank having a time constant of 1 min and a resistance of 1/9  ft/cfm is operating at steady 
state with an inlet flow of 10 ft 3/min (or cfm). At time t = 0, the flow is suddenly increased to 
100 ft 3/min for 0.1 min by adding an additional 9 ft 3 of water to the tank uniformly over a 
period of 0.1 min. Plot the response in tank level and compare with the impulse response.  
 

From the data given in this example, the transfer 
function of the process is  
 

Input may be expressed as the difference in step 
functions  
 

Combining this and the transfer function of the process, we 
obtain  
 



• The first term in Eq. can be inverted as shown in Eq. to give 10(1- e-t).  

•  The second term, which includes e -0.1 s, must be inverted by use of  
the theorem on translation of functions  
 

Or  

The complete solution to this problem, which is the inverse of 
Eq.  
 

which is equivalent 
to  
 



Inverse of Y (s) can be found directly from the table of transforms and 
can be written in the form  
 

 

 

The response of the system to an impulse of magnitude 9 is given by 

Assume Impulse input for first order system already derived expression  

Approximation of an impulse function in a liquid-level system 

The responses to step and sinusoidal forcing functions are the 

same for the liquid level system as for the mercury thermometer. 

Hence, they need not be rederived.  

This is the advantage of characterizing all first-order systems by 
the same transfer function.  
 



Liquid-Level Process with Constant-Flow Outlet  

qo (t) is now a constant; 

thus  
 

 

 

At steady state 

Introducing the deviation variables  
 



For instance, if a step change Q (t) = u (t) were applied to the system  
 

• The step response given by Eq. is a ramp function that grows without limit.  

• Such a system that grows without limit for a sustained change in input is 

said to have nonregulation.  

• Systems that have a limited change in output for a sustained change in input 

are said to have  regulation. 

• If the inlet flow to the process is increased, the level will rise until the 

outlet flow becomes equal to the inlet flow, and then the level stops 
changing. This process is said to be self-regulating.(first example)  
 



The transfer function for the liquid-level system with constant outlet flow 
given by Eq. can be considered as a special case of as R ∞.  

Mixing Process  
 

Stream of solution containing dissolved salt flows 

at a constant volumetric flow rate q into a tank of 

constant holdup volume V.  

The concentration of the salt in the entering  
stream x (mass of salt/volume) varies with time.  
 

It is desired to determine the transfer function relating the outlet concentration  y to the 

inlet concentration  x 



If we assume the density of the solution to be constant, the flow rate in must equal the  

flow rate out, since the holdup volume is fixed.  

We may analyze this system by writing a transient mass balance for the salt; 
 thus  
 

Mass balance in terms of symbols gives  
 

Introducing the deviation variables  



Laplace transform of this expression and rearranging the result give  

Heating Process  
 

A stream at temperature Ti is fed to the tank.  

Heat is added to the tank by means of an electric 

heater. The tank is well mixed, and the  

temperature of the exiting stream is T. The flow  

rate to the tank is constant at w lb/h.  

 



A transient energy balance on the tank yields 

where Tref is the reference temperature and C is the heat capacity of the fluid.  

 
At steady state, dT/dt is zero,  

If we assume that Ti is constant (and so Ti = Tis ) and introduce the deviation variables  
 



Taking Laplace transforms  

Thus, this process exhibits first-order dynamics as the tank temperature T 
responds to changes in the heat input to the tank.  
 



Mixed tank heater  

 
In terms of deviation variables, this 
becomes  
 

Substituting in numerical values for the variables, we obtain the actual 
transfer function for this mixed tank heater.  
 



Inverting to the time domain, we obtain the expression for 
T ( t )  
 

and finally, we obtain the expression for T ( t ), the actual tank outlet 
temperature.  
 



In summarizing the previous examples of first-order systems, the time constant  
for each has been expressed in terms of system parameters; thus  
 

for thermometer  
 

for liquid-level process  
 

for mixing process  
 

for heating process  
 



LINEARIZATION  
 • Most physical systems of practical importance are nonlinear.  

• Characterization of a dynamic system by a transfer function can be done only for  
linear systems (those described by linear differential equations).  

• A very important technique for such approximation is illustrated by the following 
discussion of the liquid-level system. 

• Flow out of the tank follows a square root relationship  

 

where C is a constant 

•  For a liquid of constant density and a tank of uniform cross-sectional area A, a  
material balance around the tank gives  

 

 

 

nonlinear differential equation 
 



Method of Linearization 

Taylor series expansion truncated to include only the linear terms.  

Thus for a single variable function  
 

For functions of two variables, we have 

Consider the differential equation describing the dynamics of a 
system  
 

Linearizing the nonlinear term gives  
 



Writing this equation again for the steady-state case gives 

we can convert the original differential equation to deviation 
variables:  
 



• At this point, we cannot proceed as before and take the Laplace transform. 

•  This is due to the presence of the nonlinear term h1/2, for which there is no 

simple transform.  

•  This difficulty can be circumvented by linearizing the nonlinear term. 
 

• By means of a Taylor series expansion, the function qo ( h) may be expanded 

around the steady-state value hs; 
 thus  
 

Taking the derivative of qo with respect to h in Eq. and evaluating the derivative at h=  hs give  
 



Introducing deviation variables  
 


