# HIGHER-ORDER SYSTEMS: SECOND-ORDER AND TRANSPORTATION LAG



#### **SECOND-ORDER SYSTEM**

#### **Transfer Function**

A second-order system can arise from two first-order systems in series.

Some systems are inherently second-order, and they do not result from a series combination of two first-order systems.

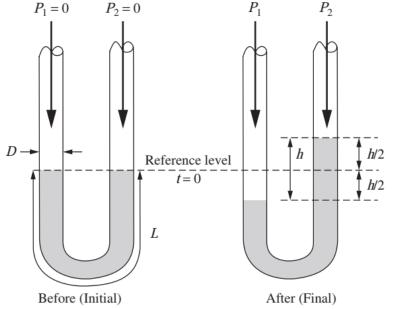
Inherently second-order systems are not extremely common in chemical engineering applications.

Most second-order systems that we encounter will result from the addition of a controller to a first-order process.

Second-order system or a quadratic lag

$$A\frac{d^2y}{dt^2} + B\frac{dy}{dt} + Cy = x(t)$$

Consider a simple manometer the pressure on both legs of the manometer is initially the same.



The length of the fluid column in the manometer is *L*.

At time t = 0, a pressure difference is imposed across the legs of the manometer.

Assuming the resulting flow in the manometer to be laminar and the steady-state friction law for drag force in laminar flow to apply at each instant, we will determine the transfer function between the applied pressure difference  $\Delta P$  and the manometer reading *h*.

#### Perform a momentum balance on the fluid in the manometer:

(Sum of forces causing fluid to move) = (Rate of change of momentum of fluid)

 $\begin{pmatrix} \text{Sum of forces} \\ \text{causing fluid to move} \end{pmatrix} = \begin{pmatrix} \text{Unbalanced pressure forces} \\ \text{causing motion} \end{pmatrix} - \begin{pmatrix} \text{Frictional forces} \\ \text{opposing motion} \end{pmatrix}$ 

$$\binom{\text{Unbalanced pressure forces}}{\text{causing motion}} = (P_1 - P_2)\frac{\pi D^2}{4} - \rho g h \frac{\pi D^2}{4}$$

 $\begin{pmatrix} Frictional forces \\ opposing motion \end{pmatrix} = \begin{pmatrix} Skin friction \\ at wall \end{pmatrix} = \begin{pmatrix} Shear stress \\ at wall \end{pmatrix} \times \begin{pmatrix} Area in contact \\ with wall \end{pmatrix}$ 

 $\binom{\text{Frictional forces}}{\text{opposing motion}} = \tau_{\text{Wall}}(\pi DL) = \frac{8\mu\overline{V}}{D}(\pi DL) = \left(\frac{8\mu}{D}\right)\left(\frac{1}{2}\frac{dh}{dt}\right)(\pi DL)$ 

The term for the skin friction at the wall is obtained from the Hagen-Poiseuille relationship for laminar flow .

Note that *V* is the average velocity of the fluid in the tube, which is also the velocity of the interface, which is equal to  $\frac{1}{2} \frac{dh}{dt}$ 

(Rate of change of momentum) =  $\frac{d}{dt}$ (mass × velocity × momentum correction factor) =  $\left(\rho \frac{\pi D^2}{4}L\right)(\beta) \frac{d\overline{V}}{dt}$ =  $\left(\rho \frac{\pi D^2}{4}L\right)(\beta) \left(\frac{1}{2} \frac{d^2 h}{dt^2}\right)$ 

The momentum correction factor  $\beta$  accounts for the fact that the fluid has a parabolic velocity profile in the tube, and the momentum must be expressed as  $\beta mV$  for laminar flow.

The value of  $\beta$  for laminar flow is 4/3.

Substituting the appropriate terms produces the desired force balance equation for the manometer.

$$\left(\rho\frac{\pi D^2}{4}L\right)\left(\frac{4}{3}\right)\left(\frac{1}{2}\frac{d^2h}{dt^2}\right) = (P_1 - P_2)\frac{\pi D^2}{4} - \rho gh\frac{\pi D^2}{4} - \left(\frac{8\mu}{D}\right)\left(\frac{1}{2}\frac{dh}{dt}\right)(\pi DL)$$

$$\left(\rho\frac{\pi D^2}{4}L\right)\left(\frac{4}{3}\right)\left(\frac{1}{2}\frac{d^2h}{dt^2}\right) + \left(\frac{8\mu}{D}\right)\left(\frac{1}{2}\frac{dh}{dt}\right)(\pi DL) + \rho gh\frac{\pi D^2}{4} = (P_1 - P_2)\frac{\pi D^2}{4}$$

• Dividing both sides by  $\rho g$  ( $\pi D^2/4$ ), we arrive at the standard form for a second-order system.

$$\frac{2L}{3g}\frac{d^2h}{dt^2} + \frac{16\mu L}{\rho D^2 g}\frac{dh}{dt} + h = \frac{P_1 - P_2}{\rho g} = \frac{\Delta P}{\rho g}$$
$$\tau^2 \frac{d^2 Y}{dt^2} + 2\zeta\tau \frac{dY}{dt} + Y = X(t)$$
$$\tau^2 = \frac{2L}{3g} \qquad \tau = \sqrt{\frac{2L}{3g}}$$
$$2\zeta\tau = \frac{16\mu L}{\rho D^2 g} \qquad \zeta = \frac{8\mu}{\rho D^2}\sqrt{\frac{3L}{2g}} \text{ dimensionless}$$
$$X(t) = \frac{\Delta P}{\rho g} \quad \text{and} \quad Y = h$$

If the fluid column is motionless (dY/dt = 0) and located at its rest position (Y=0) before the forcing function is applied, the Laplace transform

$$\tau^2 s^2 Y(s) + 2\zeta \tau s Y(s) + Y(s) = X(s)$$

$$\frac{Y(s)}{X(s)} = \frac{1}{\tau^2 s^2 + 2\zeta \tau s + 1}$$

All such systems are defined as second-order.

Note that it requires two parameters,  $\tau$  and  $\zeta$ , to characterize the dynamics of a second-order system in contrast to only one parameter for a first-order system.

Response of a second-order system to some of the common forcing functions, namely, step, impulse, and sinusoidal.

#### **Step Response**

If the forcing function is a unit-step function,  $X(s) = \frac{1}{s}$ 

In terms of the manometer shown in, this is equivalent to suddenly applying a pressure difference [such that  $X(t) = \Delta P / \rho g = 1$ ] across the legs of the manometer at time t = 0.

Superposition will enable us to determine easily the response to a step function of any other magnitude.

$$Y(s) = \frac{1}{s} \frac{1}{\tau^2 s^2 + 2\zeta \tau s + 1}$$

The quadratic term in this equation may be factored into two linear terms that contain the roots

$$s_{a} = -\frac{\zeta}{\tau} + \frac{\sqrt{\zeta^{2} - 1}}{\tau} \qquad s_{b} = -\frac{\zeta}{\tau} + \frac{\sqrt{\zeta^{2} - 1}}{\tau}$$
$$Y(s) = \frac{1/\tau^{2}}{s(s - s_{a})(s - s_{b})}$$

| Step | resp | onse | of a | second- | order | system |
|------|------|------|------|---------|-------|--------|
|      |      |      |      |         |       | •/     |

| Case | ζ   | Nature of roots | Description of response      |
|------|-----|-----------------|------------------------------|
| I    | < 1 | Complex         | Underdamped or oscillatory   |
| II   | = 1 | Real and equal  | Critically damped            |
| III  | > 1 | Real            | Overdamped or nonoscillatory |

#### CASE I STEP RESPONSE FOR $\zeta < 1$ .

For this case, the inversion of Eq. yields the result

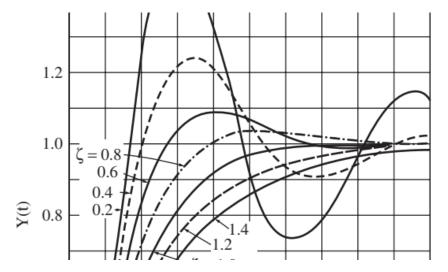
$$Y(t) = 1 - \frac{1}{\sqrt{1 - \zeta^2}} e^{-\zeta t/\tau} \sin\left(\sqrt{1 - \zeta^2} \frac{t}{\tau} + \tan^{-1} \frac{\sqrt{1 - \zeta^2}}{\zeta}\right)$$

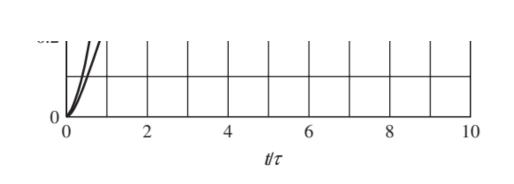
Since  $\zeta < 1$ , indicate a pair of complex conjugate roots in the left half-plane and a root at the origin.

$$Y(t) = C_1 + e^{-\zeta t/\tau} \left( C_2 \cos \sqrt{1 - \zeta^2} \frac{t}{\tau} + C_3 \sin \sqrt{1 - \zeta^2} \frac{t}{\tau} \right)$$

The constants  $C_1$ ,  $C_2$ , and  $C_3$  are found by partial fractions.

- Y(t) is plotted against the dimensionless variable  $t / \tau$  for several values of  $\zeta$ .
- Note that for  $\zeta < 1$  all the response curves are oscillatory in nature and become less oscillatory as  $\zeta$  is increased.
- The slope at the origin is zero for all values of  $\zeta$ .
- The response of a second-order system for  $\zeta < 1$  is said to be *underdamped*.
- If we step-change the pressure difference across an underdamped manometer,
- The liquid levels in the two legs will oscillate before stabilizing.
- The oscillations are characteristic of an underdamped response.





CASE II STEP RESPONSE FOR  $\zeta = 1$ . For this case, the response is given by the expression

$$Y(t) = 1 - \left(1 + \frac{t}{\tau}\right)e^{-t/\tau}$$

Show that the roots  $s_1$  and  $s_2$  are real and equal.

The response, which is plotted in Fig. is nonoscillatory. This condition,  $\zeta = 1$ , is called *critical damping* and allows the most rapid approach of the response to Y = 1 without oscillation.

### CASE III STEP RESPONSE FOR $\zeta > 1$

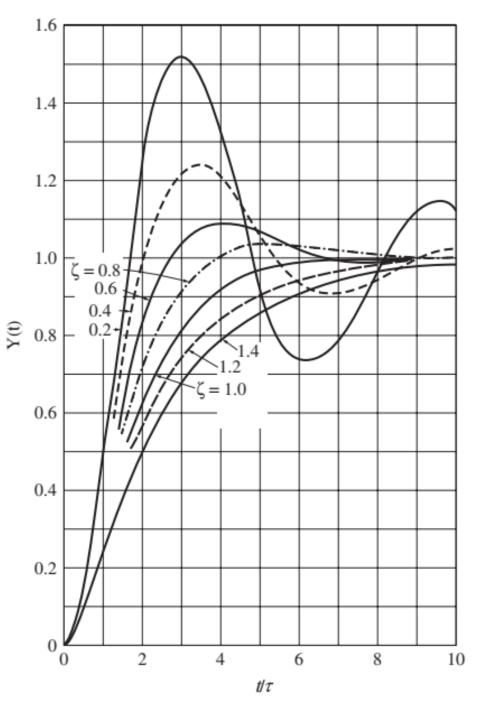
For this case, the inversion of Eq. gives the result

$$Y(t) = 1 - e^{-\zeta t/\tau} \left( \cosh \sqrt{\zeta^2 - 1} \frac{t}{\tau} + \frac{\zeta}{\sqrt{\zeta^2 - 1}} \sinh \sqrt{\zeta^2 - 1} \frac{t}{\tau} \right)$$

where the hyperbolic functions are defined as

$$\sinh a = \frac{e^a - e^{-a}}{2}$$
  $\cosh a = \frac{e^a + e^{-a}}{2}$ 

- The response has been plotted for several values of  $\zeta$ .
- Notice that the response is nonoscillatory and becomes more "sluggish" as  $\zeta$  increases.
- This is known as an *overdamped* response.
- As in previous cases, all curves eventually approach the line *Y* = 1.



Actually, the response for  $\zeta > 1$ 

$$\frac{Y(s)}{X(s)} = \frac{1}{(\tau_1 s + 1)(\tau_2 s + 1)}$$

This is true for  $\zeta > 1$  because the roots  $s_1$  and  $s_2$  are real,

may be factored into two real linear factors

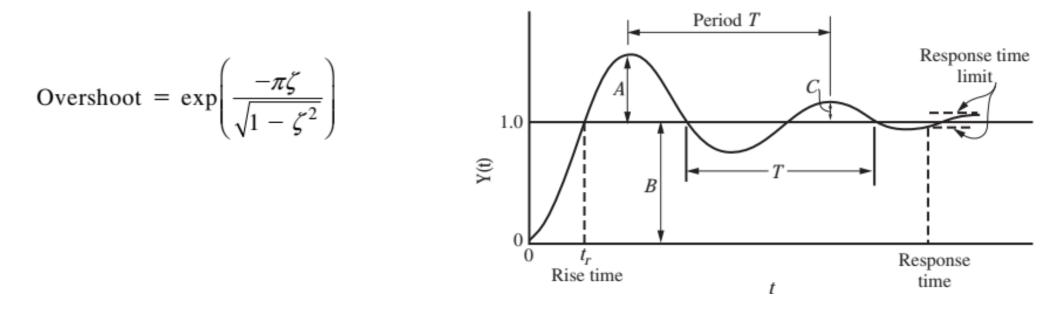
$$\tau_1 = \left(\zeta + \sqrt{\zeta^2 - 1}\right)\tau$$
$$\tau_2 = \left(\zeta - \sqrt{\zeta^2 - 1}\right)\tau$$

Note that if  $\tau_1$   $\tau_2$ , then  $\tau = \tau_1 = \tau_2$  and  $\zeta = 1$ .

# Terms Used to Describe an Underdamped System

#### **Overshoot**

Overshoot is a measure of how much the response exceeds the ultimate value



Following a step change and is expressed as the ratio A/B in Figure

The overshoot for a unit step is related to  $\zeta$  by the expression

### Why are we concerned about overshoot?

Temperature in our chemical reactor cannot be allowed to exceed a specified temperature to protect the catalyst from deactivation, or if it's a level control system,

These physical limitations, we can determine allowable values of  $\zeta$  and choose our control system parameters to be sure to stay within those limits.

### Decay ratio

The decay ratio is defined as the ratio of the sizes of successive peaks and is given by C/A in Figure.

The decay ratio is related to  $\zeta$  by the expression

Decay ratio = 
$$\exp\left(\frac{-2\pi\zeta}{\sqrt{1-\zeta^2}}\right) = (\text{overshoot})^2$$

Notice that larger  $\zeta$  means greater damping, hence greater decay.

**Rise time** This is the time required for the response to first reach its ultimate value and is labeled  $t_r$  in Figure.

The reader can verify from Figure that  $t_r$  increases with increasing  $\zeta$ .

*Response time* This is the time required for the response to come within 5 percent of its ultimate value and remain there.

The response time is indicated in Figure. The limits 5 percent are arbitrary, and other limits can be used for defining a response time.

*Period of oscillation T*he radian frequency (radians/time) is the coefficient of *t* in the sine term; thus,

radian frequency 
$$\omega = \frac{\sqrt{1-\zeta^2}}{\tau}$$

Since the radian frequency  $\omega$  is related to the cyclical frequency *f* by  $\omega = 2\pi f$ , it follows that

$$f = \frac{1}{T} = \frac{1}{2\pi} \frac{\sqrt{1-\zeta^2}}{\tau}$$

where *T* is the period of oscillation (time/cycle), *T* is the time elapsed between peaks. It is also the time elapsed between alternate crossings of the line Y = 1.

#### Natural period of oscillation

If the damping is eliminated [ B=0,  $\zeta=0$ ], the system oscillates continuously without attenuation in amplitude.

Under these "natural" or undamped conditions, the radian frequency is  $1/\tau$ , as shown by when  $\zeta = 0$ .

This frequency is referred to as the *natural frequency*  $\omega_n$ 

$$\omega_n = \frac{1}{\tau}$$

The corresponding natural cyclical frequency  $f_n$  and period  $T_n$  are related by the expression

$$f_n = \frac{1}{T_n} = \frac{1}{2\pi\tau}$$

Thus,  $\tau$  has the significance of the undamped period.

Natural frequency is related to the actual frequency by the expression

$$\frac{f}{f_n} = \sqrt{1 - \zeta^2}$$

Notice that for  $\zeta < 0.5$  the natural frequency is nearly the same as the actual frequency.

In summary, it is evident that  $\zeta$  is a measure of the degree of damping, or the oscillatory character, and  $\tau$  is a measure of the period, or speed, of the response of a second-order system

### **Impulse Response**

If a unit impulse  $\delta(t)$  is applied to the second-order system, then from Eqs. and the transform of the response is

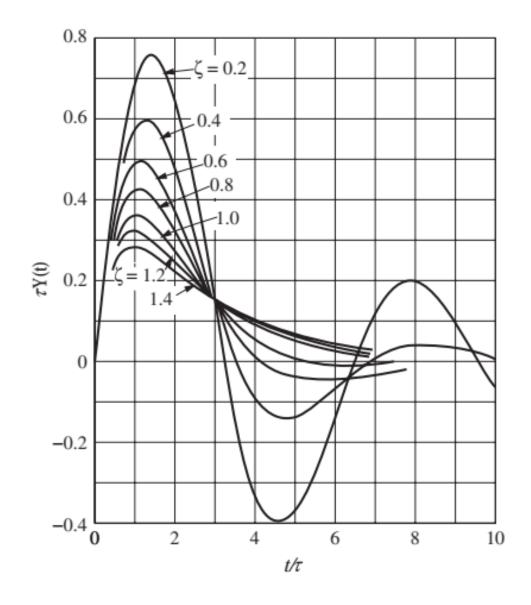
$$Y(s) = \frac{1}{\tau^2 s^2 + 2\zeta \tau s + 1}$$

As in the case of the step input, the nature of the response to a unit impulse will depend on whether the roots of the denominator of Equation are real or complex.

The problem is again divided into the three cases shown in Table , and each is discussed below.

CASE I IMPULSE RESPONSE FOR  $\zeta < 1$ 

$$Y(t) = \frac{1}{\tau} \frac{1}{\sqrt{1 - \zeta^2}} e^{-\zeta t/\tau} \sin \sqrt{1 - \zeta^2} \frac{t}{\tau}$$



$$Y(s)|_{impulse} = sY(s)|_{step}$$

$$Y(t)|_{\text{impulse}} = \frac{d}{dt} (Y(t)|_{\text{step}})$$

#### CASE II IMPULSE RESPONSE FOR FOR $\zeta = 1$

For the critically damped case, the response is given by

$$Y(t) = \frac{1}{\tau^2} t e^{-t/\tau}$$

CASE III IMPULSE RESPONSE FOR.  $\zeta = 1$ 

$$Y(t) = \frac{1}{\tau} \frac{1}{\sqrt{\zeta^2 - 1}} e^{-\zeta t/\tau} \sinh \sqrt{\zeta^2 - 1} \frac{t}{\tau}$$

However, the impulse response always returns to zero.

Terms such as *decay ratio, period of oscillation,* etc., may also be used to describe the impulse response.

## **Sinusoidal Response**

If the forcing function applied to the second-order system is sinusoidal

 $X(t) = A\sin\omega t$  $A\omega$ 

$$Y(s) = \frac{110}{(s^2 + \omega^2)(\tau^2 s^2 + 2\zeta \tau s + 1)}$$

The inversion of Equation may be accomplished by first factoring the two quadratic terms to give

$$Y(s) = \frac{A\omega/\tau^2}{(s - j\omega)(s + j\omega)(s - s_a)(s - s_b)}$$

Here  $s_a$  and  $s_b$  are the roots of the denominator of the transfer function and are given by Eqs.

For the case of an underdamped system ( $\zeta < 1$ ), the roots of the denominator are a pair of pure imaginary roots ( $+j\omega$ ,  $-j\omega$ ) contributed by the forcing function and a pair of complex roots

$$\left(-\zeta/\tau+j\sqrt{1-\zeta^2}/\tau, -\zeta/\tau-j\sqrt{1-\zeta^2}/\tau\right)$$

We may write the form of the response Y(t)

$$Y(t) = C_1 \cos \omega t + C_2 \sin \omega t + e^{-\zeta t/\tau} \left( C_3 \cos \sqrt{1 - \zeta^2} \frac{t}{\tau} + C_4 \sin \sqrt{1 - \zeta^2} \frac{t}{\tau} \right)$$
$$Y(t)|_{t \to \infty} = C_1 \cos \omega t + C_2 \sin \omega t$$

$$p\cos B + q\sin B = r\sin(B + \theta)$$
  $Y(t) = \frac{A\omega\tau}{\tau^2\omega^2 + 1}e^{-t/\tau} + \frac{A}{\sqrt{\tau^2\omega^2 + 1}}\sin(\omega t + \phi)$ 

$$r = \sqrt{p^2 + q^2}$$
  $\tan \theta = \frac{p}{q}$   $\phi = \tan^{-1}(-\omega\tau)$ 

If the constants  $C_1$  and  $C_2$  are evaluated,

$$Y(t) = \frac{A}{\sqrt{\left[1 - (\omega t)^2\right]^2 + (2\zeta\omega\tau)^2}}\sin(\omega t + \phi)$$
$$\phi = -\tan^{-1}\frac{2\zeta\omega\tau}{1 - (\omega\tau)^2}$$

 $X(t) = A \sin \omega t$ 

The ratio of the output amplitude to the input amplitude is

Amplitude ratio = 
$$\frac{\text{output amplitude}}{\text{input amplitude}} = \frac{1}{\sqrt{\left[1 - (\omega\tau)^2\right]^2 + (2\zeta\omega\tau)^2}}$$

Depending upon the values of  $\zeta$  and  $\omega\tau$ . This is in direct contrast to the sinusoidal response of the *first-order* system, where the ratio of the output amplitude to the input amplitude is always *less than* 1.

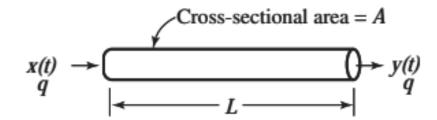
The output lags the input by phase angle  $|\phi|$ .

$$\phi$$
 = phase angle =  $-\tan^{-1} \frac{2\zeta\omega\tau}{1-(\omega\tau)^2}$ 

# **TRANSPORTATION LAG**

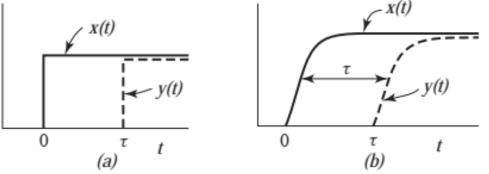
A phenomenon that is often present in flow systems is the *transportation lag*. Synonyms for this term are *dead time* and *distance velocity lag*.

System with transportation lag.



If a step change were made in x(t) at t = 0, the change would not be detected at the end of the tube until  $\tau$  later, where  $\tau$  is the time required for the entering fluid to pass through the tube.

response y(t) at the end of the pipe would be identical with x(t) but again delayed by  $\tau$ 



The transportation lag parameter  $\tau$  is simply the time needed for a particle of fluid to flow from the entrance of the tube to the exit, and it can be calculated from the expression

$$\tau = \frac{\text{volume of tube}}{\text{volumetric flow rate}}$$
  $\tau = \frac{AL}{q}$ 

Relationship between y (t) and x (t) is  $y(t) = x(t - \tau)$ 

Deviation variables  $X = x - x_s$ , and  $Y = y - y_s$  give

$$Y(t) = X(t-\tau)$$

If the Laplace transform of X(t) is X(s), then the Laplace transform of  $X(t - \tau)$  is  $e^{-s\tau} X(s)$ .

$$Y(s) = e^{-s\tau} X(s)$$
$$\frac{Y(s)}{X(s)} = e^{-s\tau}$$

We shall see in a later chapter that the presence of a transportation lag in a control system can make it much more difficult to control.

In general, such lags should be avoided if possible by placing equipment close together. They can seldom be entirely eliminated.

#### **APPROXIMATION OF TRANSPORT LAG.**

The transport lag is quite different from the other transfer functions (first-order, second-order, etc.)

It is not a rational function (i.e., a ratio of polynomials.)

- The transport lag can also be difficult to simulate by computer.
- For these reasons, several approximations of transport lag that are useful in control calculations are presented here.
- One approach to approximating the transport lag is to write  $e^{-\tau s}$  as  $1/e^{\tau s}$  and to express the denominator as a Taylor series; the result is

$$e^{-\tau s} = \frac{1}{e^{\tau s}} = \frac{1}{1 + \tau s + \tau^2 s^2 / 2 + \tau^3 s^3 / 3! + \cdots}$$

Keeping only the first two terms in the denominator gives

$$e^{-\tau s} \cong \frac{1}{1+\tau s}$$

This approximation, which is simply a first-order lag, is a crude approximation of a transport lag.

An improvement can be made by expressing the transport lag as

$$e^{-\tau s} = \frac{e^{-\tau s/2}}{e^{\tau s/2}}$$

Expanding numerator and denominator in a Taylor series and keeping only terms of first-order give

$$e^{-\tau s} \cong \frac{1 - \tau s/2}{1 + \tau s/2}$$
 first-order Padé

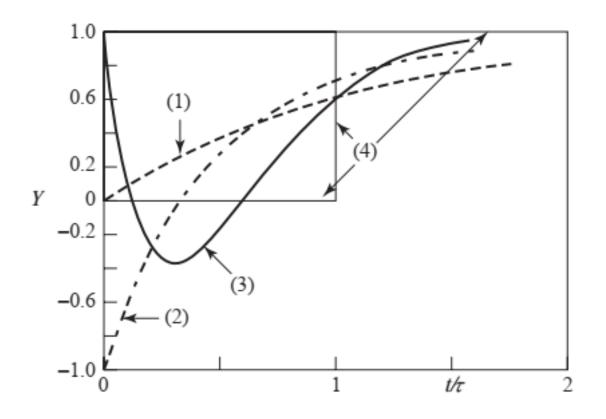
This expression is also known as a *first-order Padé* approximation.

Another well-known approximation for a transport lag is the second-order Padé approximation:

$$e^{-\tau s} \cong \frac{1 - \tau s/2 + \tau^2 s^2/12}{1 + \tau s/2 + \tau^2 s^2/12} \qquad \text{second-order Padé}$$

Equation (7.48) is not merely the ratio of two Taylor series; it has been optimized to give a better approximation.

- The step responses of the three approximations of transport lag presented in Figure. The step response of  $e^{\pi}$  is also shown for comparison.
- Notice that the response for the first-order Padé approximation drops to 1 before rising exponentially toward 1.
- The response for the second order Padé approximation jumps to 1 and then descends to below 0 before returning gradually back to 1.



Step response to approximation of the transport lag  $e^{-\tau s}$ : (1)  $\frac{1}{\tau s + 1}$ ; (2) first-order Padé; (3) second-order Padé; (4)  $e^{-\tau s}$ .

- Although none of the approximations for  $e^{-\tau s}$  is very accurate, the approximation for  $e^{-\tau s}$  is more useful when it is multiplied by several first-order or second-order transfer functions.
- In this case, the other transfer functions filter out the high-frequency content of the signals passing through the transport lag, with the result that the transport lag approximation,
- when combined with other transfer functions, provides a satisfactory result in many cases. The accuracy of a transport lag can be evaluated most clearly in terms of frequency response, a topic covered later in this book.

