Radiation



Radiation heat transfer between two surfaces

* Till now, all discussions were about radiation from a single body

* It is now necessary to look at radiative heat transfer between two surfaces

(a) Radiation heat exchange between two black bodies

e Two black bodies 1 and 2 have surface area A; and A, and temperatures T; and T,

* The total emissive powers were E}; and E),, respectively

* Rate at which radiation is emitted by body 1 and absorbed by body 2 = Q;, = A1Ep1Fi>
* Rate at which radiation is emitted by body 2 and absorbed by body 1 = Q5,1 = A,Ep,F>4

* Therefore, net heat exchange,
Q = A1Ep1Fi1p — AyEpFyy

 Putting, Ep; =0Ty and E,, =0T, and using, A;F;;, = A,F,,
Q = A1Fi3(Epy — Epp) = A1Fi2(0Tf — oTy)

Q = A1F; U(T14 — Tz4)

» [fthe bodies are infinite parallel plates, F1, = F,; = 1
Q=4 J(T14_Tz4)




(b) Radiation heat exchange between two parallel gray (non-black) planes

* If the two bodies are not black bodies , they have different emissivities and the net energy exchange is different
* Some of the energy emitted from the first plane will be absorbed, and the remainder radiated back to the source

* The emissivities and absorptivities of plane 1 and 2 are e = a4 and &, = «a,, respectively, areas are A; and A, and view
factors are F,, = F,, = 1 (parallel plates)
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In unit time, surface A, emits radiation = £; 4,07y to surface A, and a fraction of this energy, &, (¢, = a,) is absorbed by 4,
Energy radiated from A; = €,4,0T7 = X

Energy absorbed by A, = &, (¢,4,0T{) = &, (X)

Energy reflected back by A, to A; = (1 — &,)(g,4,0T7) = (1 — &)(X)



£ (X) g2(1 — &)(1 — £5)(X) E(1—&)(1—g)(1— & )(1— &) (X)

=

e14,0T = X (1 —&1)(1— &)(X) (1— &)1 — &,)(1— &1)(1 — &) (jf)

(1— 52)(}{)\/[1 &)1 —&)(1— &) (X) p |
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Of this amount, energy reabsorbed by A; = &1(1 — &,)(g;A;0Ty) = £4(1 — £,)(X)

and energy reflected by A; = (1 — &)(1 — &,)(g,4,6T¢) = (1 — £1)(1 — &3)(X)

Of this reflected amount, energy absorbed by A, = &,(1 — &/)(1 — &,)(g;4,0T{) = £,(1 — £4)(1 — £,)(X)
Energy reflected back by A, to A; = (1 — &)(1 — &)(1 — &)(g,4,0T{) = (1 — &)(1 — &1)(1 — &)(X)

Again of this amount, energy reabsorbed by A; = g,(1 — &)(1 — &1)(1 — &)(g14,0T{) = (1 — &,))(1 — £,)(1 — &) (X)
and energy reflected by A; = (1 — &1)(1 — &)(1 — &1)(1 — &) (X)
Of this reflected amount, energy absorbed by A, = &,(1 — £4)(1 — &,)(1 — &)(1 — &) (X)
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=

e14,0T = X (1 —&)(1 — £5)(X) (1— &)1 — &,)(1— &1)(1 — &) (j&’}
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* This continues and the total energy sent from A, and absorbed by A,

Quz =& (X) + &2(1 — g1)(1 — £2)(X) + £2(1 — &1)(1 — &2)(1 — £1)(1 — &3) (X) + -
Q12 = €2 (£1410TT) + £2(1 — £1)(1 — £3)(£1410T7) + £2(1 — £1)(1 — £2)(1 — £1)(1 — &£3)(£1410T7) + -
Q12 = A10T1[e18; + £185(1 — £1)(1 — &) + £185(1 — £1)(1 — £2)(1 — £1)(1 — &3) + -]

€1&2

—(1—&1)(1 - &)
1

1/82

Q12 = A,0T;} 1

Q12 = A1oT} 1/
€1



 Similarly, the amount absorbed at A; coming from A,

1
Qz1=A10T‘211 1
/€1+ /82_1

* The net transfer of energy from 1to 2 is

a 1 =  for parallel plates
o TZ) 1 1
Je,+ /e, — 1

Q12 = A10(T}

* In case of transfer of energy between concentric spheres or cylinders or other geometries, then the equation
becomes,

1

A
1/£1+A_;(1/€2 _1)

Q12 = A10(TT —T3)




Problem

Liquid nitrogen boiling at 77K (-196° C) is stored in a 15 litre spherical container of diameter 32 cm. The container is
surrounded by a concentric spherical shell of diameter 36 cm at a temperature of 303 K (30°C) and the space
between the two spheres is evacuated. The surfaces of the spheres facing each other are silvered and have an
emissivity of 0.03. Taking the latent of vaporization for liquid nitrogen to be 201 klJ/kg, find the rate of which
nitrogen evaporates. Also, find the rate of evaporation, if often the surfaces were black.

Here, 0=5.67x108W/mK*, T, =77K, T,=303K, D;=032m, D,=036m, & =¢&, = 0.03

A, =D} = 0.3217m? A, = D% = 0.407 m?
4 4 1
Q1 = A1o(Ty —T) 1 A7 1
/81 +A_2( /82 o 1)
1
Q,, = 0.3217 x 5.67 x 1078(77% — 303%) = —2.5998 W

1 03217 /1
/0.03+ 0407 ( /003~ 1)
Now, A = 201 kJ /kg

Rate of evaporation =

_ 25998 o
~ 201 x1000 g/




If both the bodies were black,
81 = 82 = 1

and
1

A
1/€1+A_;(1/€2 _1)

Q12 = A1U(T14 - Tz4)

Q12 = Ao (T{ —T5)

Q12 = 0.3217 X 5.67 x 1073(77* — 303%)

= —153.105 W
Now, A = 201 kJ /kg

>

Rate of evaporation =

_ 153.105
~ 201 x 1000

= 2.742 kg /h



Radiation shield

* A radiation shield is a barrier wall of low emissivity placed between two walls in order to reduce the exchange of
radiation between them

* The shield puts an additional resistance 1 | E )
* The net exchange between two initial planes is @ = 4,0 (TT — T3) 1/ N 1/ n z' LF &
_ | e
* If&q = &, but &; # &3, the net exchange from 1 to 2 is given by, £1 &2 :
01 = Ayo(Tt ~T4) g1 — = Ao (T4~ T8 1 —
1/£1+1/£3_1 1/£3+1/82_1
or, 4 4
T+ T
(T4 —T%) = (T4 -T3) = Tg:—lz 2
e Putting this value in the first equation we get,
TT + T3 1 1 1
01 =10t - = A0 (11— T3)
2 1/£1+1/£3_1 2 1/81+1/£3_1
® Ifthe£1=£3, leg
2 0 If the emissivity of the shield is the same as the initial
° Or, Q, = ——1 plane, the heat exchange reduces by (ﬁ)

This kind of shield is often used in the cryogenic industry



