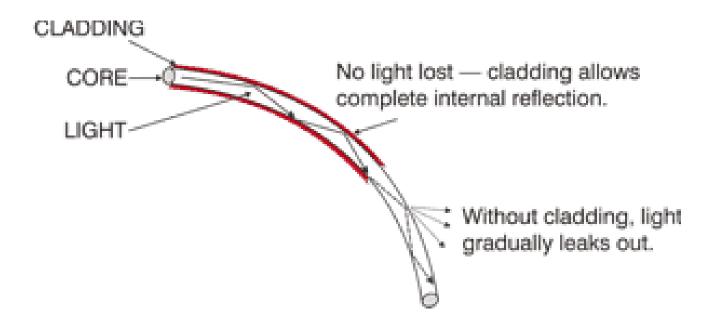
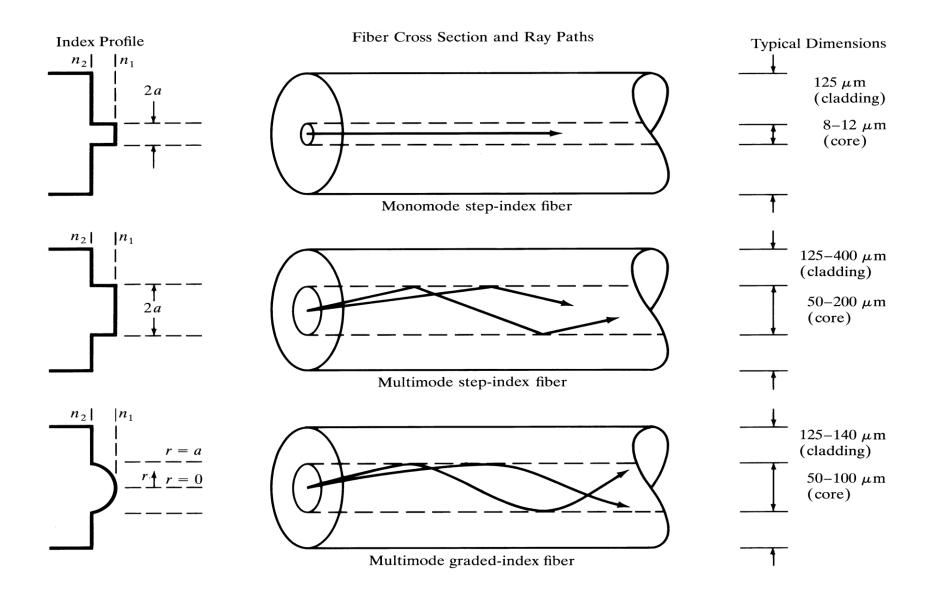

OPTICAL FIBER Materials Manufacturing-II


Fiber Structure

- An optical fiber is a long cylindrical dielectric waveguide, usually of circular cross-section, transparent to light over the operating wavelength.
- A single solid dielectric of two concentric layers. The inner layer known as Core is of radius 'a' and refractive index 'n₁'. The outer layer called Cladding has refractive index 'n₂'.


$n_2 < n_1 \rightarrow$ condition necessary for TIR

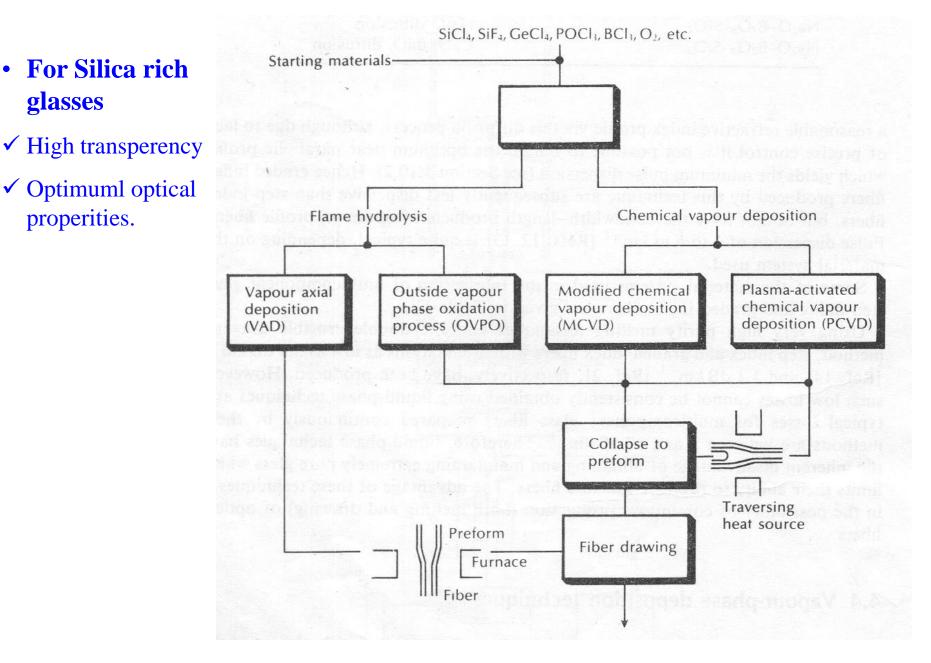
Light Propagation through Optical Fiber

Must meet the conditions for Total Internal Reflection (TIR)

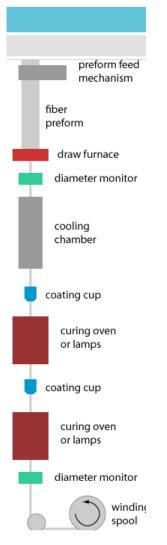
Step Index / Graded Index

DESIGNER'S PARAMETERS

Numerical Aperture (NA) : $NA = \sin\theta_a = [(n_1)^2 - (n_2)^2]^{1/2}$


0.12-0.15 for SMF, 0.15-0.25 for MMF

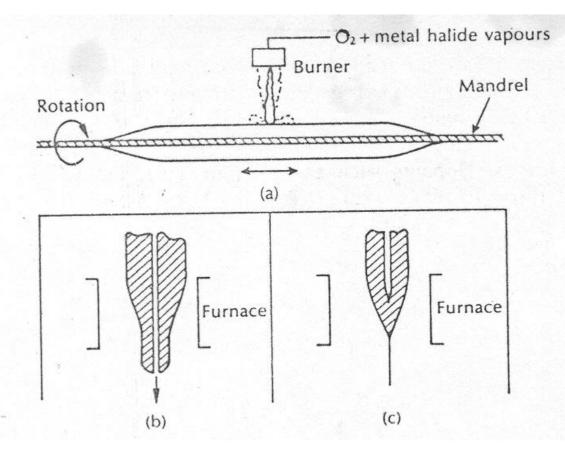
Relative Refractive Index Difference (Δ):


 $\Delta = (n_1 - n_2)/n$; n- the average refractive index < 0.4% for SMF, >1% for MMF

Normalized Frequency or V-Number: $V = [(2\pi a)/\lambda] NA$ $V \le 2.405$ for SMF; ≥ 10 for MMF

Schematic of Vapour-Phase Deposition Techniques

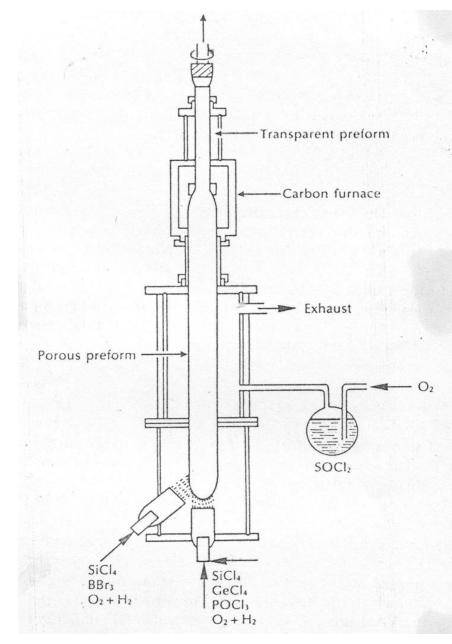
Step-II-Fiber Drawing



- Rod in tube process
- Useful only for Step Index fibers with large core and cladding diameters.
- Bubbles & particulates at interfaces
- 5-10 dB/km loss

Optical Fiber from a Preform.

Outside Vapour-Phase Oxidation (OVPO) Process


- Uses Flame hydrolysis for 'Soot' Formation

- High OH impurity content
- Cracks during mandral removal

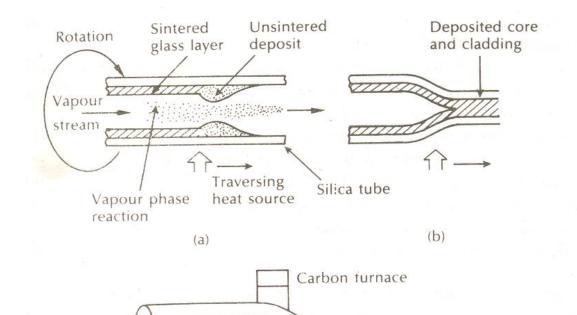
OVPO Process: (a) Soot deposition, (b) Preform Sintering (c) Fiber Drawing

VAD Process

The VAD Process

- End-on deposition
- Typical OH content between 50-200 PPM
- Reduced by applying chlorine as drying agent
- Typical Temp. 1500 ^oC
- Losses as low as 2 dB/km

Difficulties:

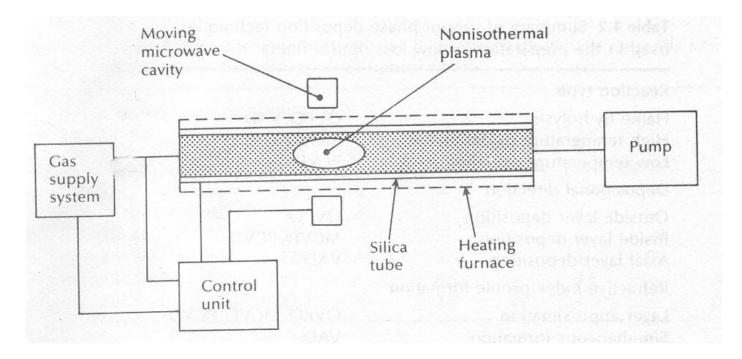

- Cracks while removing mandral
- Depression in RL profile near centre due to collapsed hole.

MCVD Techniques

- Modified Chemical Vapor Deposition (MCVD)
 - An inside vapour phase oxidation (IVPO) method

Fiber

vaporized raw materials are deposited into a pre-made silica tube

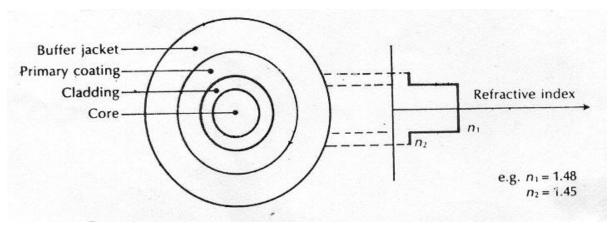

(C)

Preform rod

- Deposition within an enclosed reactor-very clean environment
- Fiber formation 1400-1600 °C, drawing at 2000 - 2200 °C
- Reduced OH impurity
- Minimum losses of only 0.2 dB/km at 1550 nm

PCVD Technique

- Plasma Activated Chemical Vapour Deposition
 - A variation on the MCVD technique to use plasma to supply energy for the vapour-phase oxidation of halides.
 - Film deposition at around 1000 ^oC



Provide controlled and high uniformity of layers

Different types of Commonly used OFs:

- Multimode step index fibers
- Multimode Graded index fibers
- Single mode fibers
- Plastic clad fibers
- All Plastic fibers

Multimode Step Index Fibers

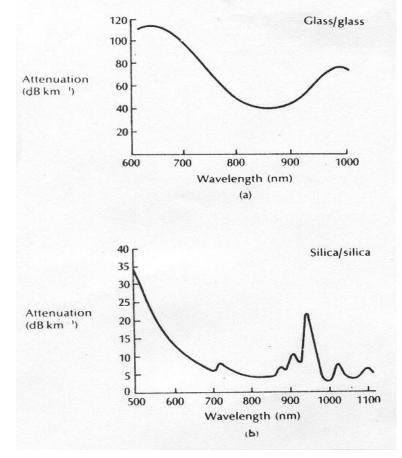
Typical structure for a glass multimode step index fiber.

Structure

Core Diameter	•	50 to 400 µm
Cladding Diameter	•	125 to 500 µm
Buffer Jacket	•	250 to 1000 μm
Numerical Aperture	:	0.16 to 0.5

- Fabricated from either from multicomponent glasses or doped silica.
- Have reasonably large core diameters and large NAs to facilitate efficient coupling to incoherent sources such as LEDs.

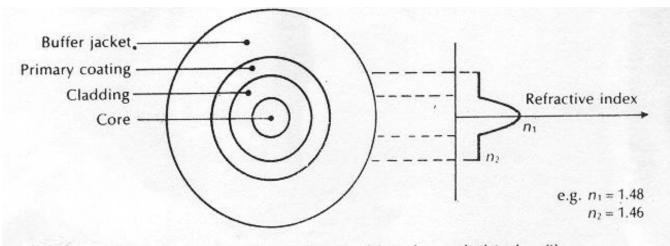
- Performance characteristics depends on the materials used and the methods of preparations
- Doped silica fibers exhibit the best performance


Attenuation : 2.6 to 50 dB/km at 850 nm,

- Limited by absorption or scattering.
- Wide variation in attenuation is due to differences between two preparation methods

Bandwidth : 6 to 50 MHz km.

Applications: Best suited for


- short-haul,
- Limited bandwidth and
- Relatively low cost applications.

Attenuation Spectra for MMSIF:

- (a) Multicomponent glass fibers
- (b) doped silica fibers.

Multimode Graded Index Fibers

Typical structure for a glass multimode graded index fiber.

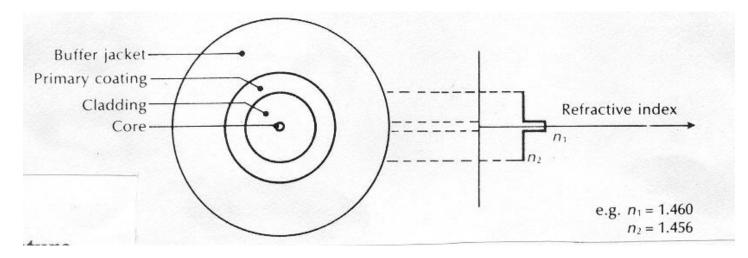
Structure

Core diameter	:	30 to 100 µm
Cladding diameter	•	100 to 150 µm
Buffer jacket diameter	•	250 to 1000 μm
Numerical aperture	•	0.2 to 0.3.

- Fabricated using MC glasses or Doped Silica
- Manufactured from materials with higher purity
- Better performance due to **index grading** and **lower attenuation**

Performance Characteristics

Attenuation:


- 2 to 10 dB km⁻¹ at a wavelength of 850nm with generally a scattering limit.
- Average losses of around 0.4 and 0.25 dB km⁻¹ can be obtained at wavelengths of 1.3 and 1.55 μ m respectively.

Bandwidth: 300 MHz km to 3 GHz km.

Applications:

• Best suited for medium-haul, medium to high bandwidth applications using incoherent and coherent multimode sources (i.e. LEDs and injection lasers respectively).

Single-Mode Fibers

Typical structure for a silica single-mode step index fiber.

Structure

Core diameter: $5 \text{ to } 10 \ \mu\text{m}$, typical around $8.5 \ \mu\text{m}$ Cladding diameter:generally 125 \ \mu\text{m}Buffer jacket diameter: $250 \text{ to } 1000 \ \mu\text{m}$ Numerical aperture:0.08 to 0.15, usually around 0.10.

Single-Mode Fibers

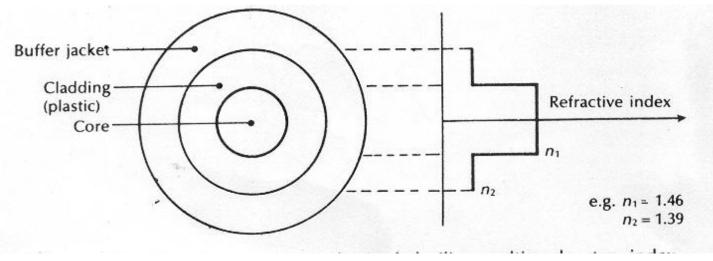
- Have either Step index or Graded index Profile
- GI Profiles
 - Provides dispersion modified SMF
 - Produce polarization maintaining fibers (PMF)
 - Expensive; Not utilized within OFC systems
- Commercially available SMFs are usually SI profile
- High quality fibers; Generally fabricated from doped silica (SCS)

Performance Characteristics

Attenuation:

- 2 to 5 dB km⁻¹ with a scattering limit at 850 nm.
- 0.35 and 0.21 dB km⁻¹ at 1310 and 1550 nm

Bandwidth:


- Greater than 500 MHz km. of 0.85 $\mu m.$
- More than 10 GHz km at a wavelength of 1.3 μ m.

Applications:

Ideally suited for high bandwidth very long haul applications using single-mode injection laser sources.

Plastic Clad (PCS) Fibers

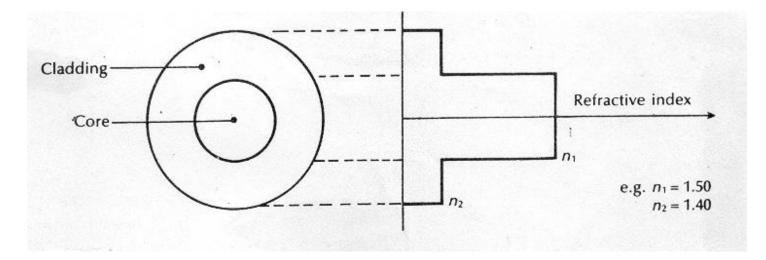
- MMF; either SI or GI profile

Typical structure for a plastic-clad silica multimode step index fiber.

Structure	<u>Step Index</u>	Graded Index
Core diameter :	100 to 500 µm	50 to 100 µm
Cladding diameter :	300 to 800 µm	125 to 150 µm
Buffer jacket diameter:	500 to 1000 µm	250 to 1000 µm
Numerical aperture :	0.2 to 0.5	0.2 to 0.3.

Performance Characteristics

Attenuation:Step index5 to 50 dB km⁻¹Graded index4 to 15 dB km⁻¹


>PCS fibers exhibit lower radiation –induced losses than SCS.

• Have improved performance in certain enviornments

≻Generally cheaper than the corresponding glass fibers

Have more limited performance characteristics

All-Plastic Fibers (PCP)

Typical structure for an all plastic fiber.

Structure

Core diameter: $200 \text{ to } 600 \ \mu\text{m}$ Cladding diameter: $450 \text{ to } 1000 \ \mu\text{m}$ Numerical aperture:0.5 to 0.6.

All-Plastic Fibers

- Exclusively of MMF SI type with large core and cladding diameters.
- Reduced requirement for buffer jacket, protection and strengthening
- Cheap and Easy to handle
- Limited use in communication applications
- Large NA:- Easy coupling to light sources
- Fabricated with Polymethyl methacrylate (PMMA) and Fluorinated polymer cladding

Performance characteristics

Attenuation : $50 \text{ to } 1000 \text{ dB } \text{km}^{-1} \text{ at } 650 \text{ nm}$

Bandwidth : Not usually specified as transmission is generally limited to tens of meters.

Applications :only be used for very short haul (i.e. 'in-
house') low cost links.

Fiber coupling and termination are relatively easy and do not require sophisticated techniques.

