Introduction to GT

Directed Graph

t A directed graph (digraph) is a tuple $G=(V, E)$ where V is a (finite) set of vertices and E is a collection of elements contained in $V \times V$. That is, E is a collection of ordered pairs of vertices.

More GRaphs

- Empty and Trivial Graphs: A graph $G=(V, E)$ in which $V=\varnothing$ is called the empty graph. A graph in which $\bar{V}=\{\mathrm{v}\}$ and $\mathrm{E}=\varnothing$ is called the trivial graph (Only one vertex). only one vertere \& no edges empty grate
\Rightarrow Agraph without edges is culled Null graphs. . No
- Isolated vertex: Let $G=(V, E)$ be a graph and $1 e t v \in V$. If $\operatorname{deg} \underline{(v)}=\underline{0}$ then v is said to be isolated.

P Connected graph
t Pendent Vertex: A vertex with degree one is called pendent vertex.
Note: Two adjacent edges are said to be in series if their common vertex is of degree 2.
 $e_{2} \& e_{3}$ is not in series brave the common vertu derma is 3

Degree and Degree Sequence

- Degree Sequence: Let $G=(V, E)$ be a graph with $|V|=n$. The degree sequence of G is a tuple $\mathbb{d} \in \underbrace{Z^{n}}$ composed of the degrees of the vertices in V arranged in decreasing order.

$$
\begin{array}{r}
1 \\
\checkmark \\
F \\
A
\end{array}
$$

Assignment 1
Theorem: Let $G=(V, E)$ be a (general) graph then: $2 E=\sum_{v \in V} \operatorname{deg}(v)$.
sum of degree is turice of no. of edges
gus
Corollary: Let $G=(V, E)$. Then there are an even number of vertices in V with odd degree.

$$
\begin{aligned}
& \text { 屋, 1, 1, 2, 2, 3, } \quad 1,1,2,3 \\
& , 3,3,2,2,1, \frac{1}{v} \\
& \text { graph? } \\
& n=6, e=15 \\
& c={ }^{n} C_{2}=\frac{n(n-1)}{2} \\
& \text { Disconnected } \\
& \text { ofrapon } \longmapsto
\end{aligned}
$$

Theorem 1: Let $G=$ (V, E) be a non-empty, non-trivial graph. Then G has at least one pair of vertices with equal degree.
Theorem $2:$ Let $G=(V, E)$ be a (general) graph then: $2 E=\sum_{v \in V} d e g(U)$ Corollary: Let $G=(V, E)$. Then there are an even number of vertices in \underline{V} with odd degree.
t Order of the graph $=$ number of vertices in graph $=|V|$
t Size of the graph $=$ number of edges in a graph $=|E|$
t Max number of edge in a graph: $\operatorname{Max~E}=\frac{n(n-1)}{2}={ }^{n} C_{2}=\binom{n}{2}$

EXAMPLE $\rightarrow \quad$ er $=21$ edges, $\quad{ }^{2}$ vertices of degree 4 \& other vertices are degree 3 .

$$
\Rightarrow e=\frac{n(n-1)}{2} \Rightarrow 21 \times 2=n(n-1) \Rightarrow 7=
$$

Let no. of vertices is n

$$
\begin{gathered}
\sum \operatorname{dy}(v)=2 e \\
\operatorname{dy}\left(v_{1}\right)+\operatorname{deg}\left(v_{2}\right)+\ldots+=2 e \\
3 \times 4+(n-3) \times 3=2 e \\
12+3 n-9=42 \\
n=13
\end{gathered}
$$

\rightarrow $e=8, ~ x=$? - ever
degree q each venters ia $\quad 3 \times 2\}$

$$
\begin{aligned}
& n \times 3=2 \times 8 \\
& n=\frac{2 \times 8}{3} \Rightarrow
\end{aligned}
$$

$$
3,3,3,3,3
$$

$$
n \times 4=2 \alpha 8
$$

$$
n=4
$$

(1) $\frac{(2,2,2,2,2)}{222} \rightarrow$ Yes
(2) $(4,4,4,4,4,0) \rightarrow$ Yes

(3) $\left(3^{v}, 3,2,2,2\right) \rightarrow$ yes
(4) $(5,3,3,3,2,2) \rightarrow$ yes

