Introduction to GT

Degree Sequence

Degree and Degree Sequence

- Empty and Trivial Graphs: A graph $G=(V, E)$ in which $V=\varnothing$ is called the empty graph (or null graph). A graph in which $V=\{v\}$ and $E=\varnothing$ is called the trivial graph.
- Isolated vertex: Let $G=(V, E)$ be a graph and let $v \in V$. If $\operatorname{deg}(v)=0$ then v is said to be isolated.

Theorem 1: Let $G=(V, E)$ be a non-empty, non-trivia1 graph. Then G has at least one pair of vertices with equal degree.
Theorem 2 : Let $G=(V, E)$ be a (general) graph then: $2 E=\sum_{v \in V} d e g(v)$. corollary: Let $G=(V, E)$. Then there are an even number of vertices in V with odd degree.
\mathfrak{t} Order of the graph $=$ number of vertices in graph

$$
n=4
$$

t Size of the graph $=$ number of edges in a graph

$$
e=5
$$

t Max number of edge in a graph: Max $E=\frac{n(n-1)}{2} \quad{ }^{n} C_{2}$

Degree and Degree Sequence

- Degree Sequence: Let $G=(V, E)$ be a graph with $|V|=n$. The degree sequence of G is a tuple $d \in Z^{n}$ composed of the degrees of the vertices in V arranged in decreasing order.
$\underline{E x} \rightarrow\left[\begin{array}{lllll}5 & 3 & 4 & 1 & 2\end{array}\right] \Rightarrow\left[\begin{array}{lllll}5 & 4 & 3 & 2 & 1\end{array}\right] \rightarrow$ graph?
$E_{x} \rightarrow\left[\begin{array}{ccccc}5 & 1 & 1 & 1 & 1\end{array}\right]$

$$
2 \times 10=5+4+3+2+1
$$

graph is not possible.

max possible edge

Have1-Hakimi Algorithm
${ }_{4} \underset{4}{ } \quad 3 \quad 3 \quad 2 \quad 2$
(4) Remove 1 \& subtract 1 from next 1 position
(1) Arrange in degree sequence

$$
\left[\begin{array}{ccccc}
4 & 3 & 3 & 2 & 2 \\
x & -1 & -1 & -1 & -1
\end{array}\right]
$$

$\left[\begin{array}{ll}0 & 0\end{array}\right] \Rightarrow$ If off contain all zero then the the graphical order is correct the we make a digraph.
(2) Remove first element $k=4$ \& subtract 1 from next $4=k$ (position)

$$
\left[\begin{array}{cccc}
2 & 2 & 1 & 1
\end{array}\right]
$$

(3) Repeat, remove $2 \&$ subtract 1 from next two position

$$
\left[\begin{array}{lll}
1 & 0 & 1
\end{array}\right] \Rightarrow\left[\begin{array}{ccc}
1 & 1 & 0
\end{array}\right]
$$

$$
\left.\begin{array}{l}
5 \\
\Rightarrow\left\{\begin{array}{llllll}
5 & 5 & 5 & 5 & 5
\end{array} \left\lvert\, \underline{E x} \rightarrow\left[\begin{array}{llllllll}
4 & 5 & 3 & 4 & 3 & 3 & 2
\end{array}\right]\right.\right. \\
4
\end{array} 4 \begin{array}{llllllll}
1 & 4 & 4 & 4 & 4
\end{array}\right]
$$

(1) $\left(\begin{array}{lllll}2 & 2 & 2 & 2 & 2\end{array}\right) \longrightarrow$

(3) (3) (3) $\left.2 \begin{array}{lll}3 & 2\end{array}\right] \quad \begin{array}{ll}2 e \geqslant \sum d e g \\ 30 \geqslant 20\end{array}$

(4) $(5,3-3-3,22) \rightarrow$ yes 4 = ener.

$$
\text { yes } 1 \begin{array}{lllll}
1 & 3 & 5 & 4 & 3 \\
3 & 2 \\
\hline
\end{array}
$$

$$
\begin{align*}
& {\left[\begin{array}{lllllll}
{\left[\begin{array}{llll}
5 \\
4 \\
\text { Remon } \\
4
\end{array}\right.} & 4 & 4 & 3 & 3 & 3 & 2
\end{array}\right]} \tag{5}\\
& \left.\left[\begin{array}{lllll}
X & \underbrace{3}_{-1} & 2 & 2 & 2
\end{array}\right]\right\} \text { Remone } 5 \\
& {\left[\begin{array}{llll}
5 & 4 & 4 & 2
\end{array} 1\right]} \\
& {\left[\begin{array}{lll}
2 & 0 & -1
\end{array}\right] \begin{array}{l}
\text { max } \\
\text { deg }
\end{array}} \\
& {\left[\begin{array}{lllll}
2 & 1 & 1 & 2 & 2
\end{array}\right]} \\
& {\left[\begin{array}{llll}
\not \times & \ddots & 1
\end{array}\right]} \\
& {\left[\begin{array}{lll}
0 & 1 & 1
\end{array}\right]} \\
& \left.\begin{array}{l}
{\left[\begin{array}{lll}
x & 1 & 0
\end{array}\right]} \\
0 \\
0
\end{array}\right] \Rightarrow \text { ll } \\
& 5<\frac{d}{m}
\end{align*}
$$

