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Simple Graph: A graph without self—loop and parallel edge is called simple graph.

E%EizgﬂggQ_lnfinitg_ﬁ;gph: A graph having finite number of verties and finite number of
edges is called finite graph, otherwise infinte graph. fraute — ~uiy4 e
|v~d—\‘v'l & — {Ai(» ;*0(\\4:"{

Trivial: A ﬁiﬂiﬁg_graph with one vertex and no edges is called a trivial graph.
Null Graph: A graph of order‘;}and size zero is called null graph.
Multi—Graph: A graph having some parallel edges but no self—loop, called multi—graph.

Pseudo Graph: A graph having self—loop but no parallel edges, is called pseudo graph.

e

Labled Graph: If the vertices and edges of a graph G are labelled with name or data then
e
the graph is labelled graph.

Weighted Graph: When in graph some additional information is given by assigning positive
number called weight, graph is called weighted graph.
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ngular graph

e A graph in which all the vertices have same degree is called a regular graph.

e A regular graph where degree of each vertex is k is called as Egregular.
L - )
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ZC:> Complete Graph or Full Graph [<,,
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A graph in which each vertex is connected to every other vertex is called a complete
graph.

Note that degree of each vertex will be n—1, where n is the order of graph.

e So we can say that a complete graph of order n is nothing but a (n 1)—regular graph of
prder n. ,

e A complete graph of order n is denoted by K_. 3- Q <;:::::>L
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Bipartite Graph
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e A grapﬁ*i@’gg;g—gg—ge bipartite if we can divide the set of vertices in two disgjoint sets
such that there is no edge between vertices belonging to same set.

e Fach vertex has only one label. So the two sets are disjoint i.e. the two sets don't have
any vertex in common.

e And there should not be any edge running within the same set. This means that every edge
runs between two vertices belonging to different sets — one labelled as A and other as B.
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Complete Bipartite Graph

e Complete bipartite graph is a special type of bipartite graph where every vertex of one

set is connected to every vertex of other set

e The figure shows a bipartite graph where set A (orange—colored) consists of 2 vertices
and set B (green—colored) consists of 3 vertices

e [f the two sets have mand @ number of vertices, then we denote the complete bipartite
graph by me;




Theorem

e Maximum number of edges in a simple graph with n verties is

n(n-1) ~
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Theorem e 2|

e number of edges is a k—regular graph is T ""__________, \___l/ Lpo—"7_
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