(1) $\Sigma \operatorname{dg}(v)=2 e$
 (2) max $e={ }^{n} C_{2}=\frac{n(n-1)}{2}$
 (3) $n \geqslant \Delta(G) \Rightarrow \underset{\text { graphis }}{\text { esit }}$
 (4) degrec seqnence

- Simple Graph: A graph without se1f-1oop and para11e1 edge is called simple graph.
- Finite and Infinite Graph: A graph having finite number of verities and finite number of edges is called finite graph, otherwise infinte graph. finite - edges finite inginick - edges infinite
- Trivial: A finite graph with one vertex and no edges is called a trivial graph.
- Null Graph: A graph of order (n) and size zero is called null graph.
- Mu1ti-Graph: A graph having some para11e1 edges but no se1f-1oop, called multi-graph.
- Pseudo Graph: A graph having se1f-1oop but no para11e1 edges, is called pseudo graph.
- Labled Graph: If the vertices and edges of a graph G are labe11ed with name or data then the graph is labelled graph.
- Weighted Graph: When in graph some additional information is given by assigning positive number called weight, graph is called weighted graph.

Regular Graph
t A graph in which all the vertices have same degree is called a regular graph.
t A regular graph where degree of each vertex is \mathbf{k} is called as k-regular.
\rightarrow degree

(a) K_{4}

3 Regular graph wi th order 4/

(b) Petersen Graph

(c) Dodecahedron

$$
\begin{aligned}
& x=20 \\
& d q_{x}=3
\end{aligned}
$$

3 Regular grapes

$$
\sum_{2}^{2}{ }_{2=3}^{n=3} \text { Complete Graph or Full Graph } \quad K_{\underline{n}}
$$

t A graph in which each vertex is connected to every other vertex is called a complete graph.
t Note that degree of each vertex will be n\&1, where n is the order of graph.
t So we can say that a complete graph of order n is nothing but a (n\&l)-regular graph of order n.,
t A complete graph of order n is denoted by K_{n}.

\Rightarrow Each complete grafzis grope $\%$ order 3 Regular graft but vice-versu is not true.

2 - Regular 7 onclen 4

Bipartite Graph
t A graph is said to be bipartite if we can divide the set of vertices in two disjoint sets such that there is no edge between vertices belonging to same set.
t Each vertex has on dy one label. So the two sets are disjoint i.e. the two sets don't have any vertex in common.
t And there should not be any edge running within the same set. This means that every edge runs between two vertices belonging to different sets - one labelled as A and other as B.

$$
\begin{align*}
& \left.\begin{array}{l}
A=\{1,2,3\} \\
B=\{4,5,6,7\}
\end{array}\right\} \\
& \begin{array}{l}
\left.K_{m, n} \quad B=\{4,5,6,7\}\right\} \\
\end{array} \tag{7}\\
& \rightarrow \text { No. Iventice in set } A \\
& V=\left\{1,2,3,4, \hat{v}_{1}, 6,7\right\} \\
& \text { am. Inentis }=\text { order }=7 v=\underbrace{m+n} \\
& \left.\operatorname{mar} N o \cdot \mathrm{felges}^{(s i z e}\right)=\frac{(m+n)(m+n-1)}{2} \\
& \downarrow \text { Nob entice } \\
& \frac{n(n-1)}{2} \\
& \begin{array}{c}
\frac{(m+n)(m+n-1)}{2} \\
\Rightarrow \frac{7(7-1)}{2}
\end{array} \\
& \Rightarrow 7 \times 3=21
\end{align*}
$$

Complete Bipartite Graph

t Complete bipartite graph is a special type of bipartite graph where every vertex of one set is connected to every vertex of other set
t The figure shows a bipartite graph where set A (orange-colored) consists of 2 vertices and set B (green-colored) consists of 3 vertices
t If the two sets have mand number of vertices, then we denote the complete bipartite graph by $K_{\text {an }}$

Theorem
t Maximum number of edges in a simple graph with n vertices is $\frac{\boldsymbol{n (n - 1)}}{\mathbf{2}}$.
max degree of each vertex in simple graph of n vertices $=n \cdot(n-1)$

$$
\begin{aligned}
& \sum \operatorname{deg}(v) \Rightarrow n(n-1) \\
& 2 e \Rightarrow \frac{n(n-1)}{2} \Rightarrow \frac{n(n-1)}{2}
\end{aligned}
$$

o. $n=1, e=0$

$$
i \quad i
$$

$$
n=2, c=1, \quad \sum \operatorname{dg}(\dot{n})=2
$$

$$
e=6
$$

$$
\begin{aligned}
& \operatorname{deg}(v)=2+2+2 \quad=3 \times 2 \\
&=6 \quad \sum(y)=12 \\
& n(n-1)
\end{aligned}
$$

Theorem
t number of edges is a k-regular graph is $\frac{\boldsymbol{n} \cdot \boldsymbol{k}}{\mathbf{2}}$

$$
\begin{aligned}
\sum \operatorname{deg}(v) & =n \times k \\
2 e & =n \cdot k \\
e & =\frac{n \cdot k}{2}
\end{aligned}
$$

Simple
\Rightarrow COMPLEMENT OFAGRAPH $\Rightarrow \quad G=(V, E)$ is $\bar{G}=(\bar{V}, \bar{E})$
$\bar{V} \rightarrow$ conbains all the watices \& $\bar{E} \rightarrow$ sut 昗 $\operatorname{edgs}:\left\{\left(v_{i}, v_{i}\right) /\left(v_{i, j}\right) \notin E\right\}$
i.e., if two vertico are not adjucent in G (
$E \mathrm{Ex} \rightarrow$

$$
E x \rightarrow K_{3}
$$

$$
\bar{G}
$$

$$
\begin{aligned}
& \bar{V}=\{a, b, c, d, c\} \\
& \bar{E}=\{(a, d),(b, d),(b, c),(d, e), \\
& \{(a, d),(b, c),(c, e),(d, e)\}
\end{aligned}
$$

