Walk, Path, and Cycle

t Walk is sequence of adjacent vertices, or edges) in a graph.
t A walk is defined as a finite length alternating sequence of vertices and edges.
t The total number of edges covered in a walk is called as Length of the Walk. t If length of the walk $=\underline{0}$, then it is called as a Trivial Walk.
gnp Both vertices and edges can repeat in a walk whether it is an open walk or a closed walk.

walk 2:

$$
\begin{array}{llll}
0 & j & 0 \\
0
\end{array}
$$

$\underset{\text { stent }}{A} B \underset{C_{5}}{\rightarrow} C \underset{e_{2}}{\rightarrow} E \underset{e_{3}}{\overrightarrow{e_{4}}} D \underset{e_{4}}{B_{\text {end }}}{ }_{\text {length of walk }}=5$

Open and Closed Walk

\checkmark Open Walk:

t A walk is said to be open if the first and the last vertices are different i.e. the terminal vertices are different.

Closed Walk:

t A walk is said to be closed if the first and last vertices are the same. That means you start walking at a vertex and end up at the same. $\quad V_{A} C_{5}^{E} C_{6}{ }^{B} C_{2}^{C} e_{3}^{D} e_{1}^{E} \Rightarrow$ trail
Trail:
Trail is an open walk where vertices cankrepeatel but not edges.
\rightarrow Path:
Path is an open walk with no repetition of vertices and edges.

\rightarrow Circuit: \checkmark
circuit is a closed walk where vertices can repeat, but not edges.
Cycle:
Cycle is a closed walk where neither vertices nor edges can repeat. But since it is closed, the first and the last vertices are the same (one repetition).

Consider the following graph-
$\int \begin{aligned} & \text { closed walk } \\ & \text { open }\end{aligned}$ open walk Trail. Path $\left[\begin{array}{l}\text { circuit } \\ \text { cycle }\end{array}\right.$

Decide which of the following sequences of vertices determine walks.
For those that are walks, decide whether it is a circuit, a path, a cycle or a trail.

1. $a, b, g, f, c, b \rightarrow$ Trail
2.b,g,f,c,b,g,a open walk
-3. c, e,f,c \rightarrow cycle
2. c, e, f, c, e \rightarrow open walk

- 5. a, b, f, a $\longrightarrow \mathrm{No}_{0}$
$6 . f, d, e, c, b \rightarrow$ Trail

