Graph Theory

MTH-S503

Sy11abus

HXIT-1: [Graphs, Sub graphs, Some basic properties, Different types of graphs (Regular, Bipartite, Induced, Quotient etc.) ? Walks, paths \& circuits, connected graphs, disconnected graphs and its components, Euler graphs and its properties, Fluery s algorithms and Chinese postman problem Operation on graphs, Hamiltonian graphs and its properties, Hamiltonian paths, and circuits, the traveling sales man problem. Shortest distance algorithms (Dijkstra's).
t UNIT-2: Cuts sets and cut vertices, some properties, all cut sets in a graph, fundamental circuits and cut sets, connectivity and separability, Rank, Nullity of a graph. Digraphs : Definition, Types of Digraphs, Digraphs and Binary relations, Directed path and connectedness, Euler Digraphs.] Chap 3
UNIT-3: Trees and its characterization, Distance, Height, Diameters, Radius of a tree, Weighted Tree, Rooted and Binary trees; Spanning trees, , Weighted spanning tree, Minimum weight spanning tree algorithms prim s and Kruska1, s. Chords, Branches, Fundamental
circuits.
f UNIT-4: P1anarity: Planer graphs, Regions, Euler formula, Kuratowski two graphs, Characterization of planarity, detection of planarity, Thickness and Crossings number of a graph. Colouring of graphs: Vertex colouring, Edge colouring, Five colour Theorem, Chromatic number, chromatic polynomials, Methods of finding the chromatic polynomial, Chromatic partitioning, Independence number and Covering number. Matchings , Maxima1 matching, Augmenting path, Ha11's marriage problem.
t ${ }^{\text {UNIT5: Matrix }}$ representation of graphs : Incidence, Adjacency, Circuit, Cut-set and Path matrices and their properties. Matrix representation of Digraphs (Adjacency matrix).

Graphs, Mu1ti-Graphs, Simple Graphs

Graph: A graph is a tuple $G=(V, E)$ where V is a (finite) set of vertices and E is a finite collection of edges. The set E contains elements from the union of the one and two element subsets of V. That is, each edge is either a one or two element subset of V.

Example: $V=\{1,2,3,4\}$

$$
E=\left\{\frac{\{1,2\}}{e_{1}}, \frac{\{2,3\}}{e_{2}}, \frac{\{3,4\}}{e_{3}},\{4,1\}\right\}
$$

Self-Loop: If $G=(V, E)$ is a graph and $v \in V$ and $e=\{v\}$, then edge e is called a selfloop. That is, any edge that is a single element subset of V is called a self-1oop.

Example: $V=\{1,2,3,4\}$

Graphs, Mu1ti-Graphs, Simp1e Graphs

Vertex Adjacency: Let $G=(V, E)$ be a graph. Two vertices $\widetilde{V_{1}}$ and $\widetilde{v_{2}}$ are said to be adjacent if there exists an edge $e \in E$ so that $e=\left\{v_{1}, v_{2}\right\}$. A vertex v is se1f-adjacent if $e=\{v\}$ is an e1ement of E.

Edge Adjacency: Let $G=(V, E)$ be a graph. Two edges e_{1} and e_{2} are said to be adjacent if there exists a vertex v so that v is an element of both e_{1} and e_{2} (as sets). An edge e is said to be adjacent to a vertex v if v is an element of e as a set.

Neighborhood: Let $G=(V, E)$ be a graph and $1 \mathrm{et} v \in V$. The neighbors of v are the set of vertices that are adiace to v.

Examp1e: The neighborhood of Vertex 1 is Vertices 2 and 4 and Vertex 1 is adjacent to these vertices.

Graphs, Mu1ti-Graphs, Simple Graphs

Degree: Let $G=(V, E)$ be a graph. The degree of v, written $\operatorname{deg}(v)$ is the number of non-se1f-1oop edges adjacent to v plus two times the number of se1f-1oops defined at v .

Graphs, Mu1ti-Graphs, Simple Graphs

Mu1ti-Graphs: Let $G=(V, E)$ is a multigraph if there are two edges e_{1} and e_{2} in E so that e_{1} and e_{2} are equal as sets. That is, there are two vertices v_{1} and v_{2} in V so that $e_{1}=e_{2}=$ $\left\{\mathrm{v}_{1}, \mathrm{v}_{2}\right\}$. (contains parallel edges)
Example: The vertex set is $V=\{A, B, C, D\}$.
The edge collection is:
$E=\{\{A, B\},\{A, B\},\{A, C\},\{A, C\},\{A, D\},\{B, D\},\{C, D\}\}$

Let $G=(V, E)$ be a graph. There are two degree values that are of interest in graph theory: the largest and smallest vertex degrees usually denoted $2(G)$ and $\delta(G)$. That is:

$$
\left\{\begin{array}{l}
\text { Max-degree } \underline{\Delta}(G)=\max _{v \in V} \operatorname{deg}(v)=5= \\
\text { Min-degree } \delta(G)=\min _{v \in V} \operatorname{deg}(v)=3
\end{array}\right.
$$

Graphs, Mu1ti-Graphs, Simple Graphs

Simple Graph: Let $G=(V, E)$ is a simple graph if G has no edges that are self-1oops and if E is a subset of two element subsets of V; i.e., G is not a multi-graph.
(1) No self loop\¶lled edges \Rightarrow simple graph
(2) No parallel edge \Rightarrow graph
(3) Self loop\& para lied edge \Rightarrow multigraps

