Hypertension

Persistently elevated arterial blood pressure [BP]

Associated with both functional and morphologic alteration of blood vessels

- Arterial BP generated by the interplay between blood flow and the resistance to blood flow
- Measured in mmHg

2 types of arterial blood pressure

- Systolic BP (SBP)- achieved during cardiac contraction
- Diastolic BP (DBP)- achieved after contraction when the cardiac chambers are filling

SBP – DBP = pulse pressure (measure of arterial wall tension)

Cardiac output - major determinant of SBP

Total peripheral resistance determines DBP

- Mean arterial pressure [MAP] Average pressure throughout the cardiac cycle of contraction
- During cardiac cycle 2/3rd time spent in diastole and 1/3rd time in systole

MAP = [SBP (1/3)] + [DBP (2/3)]

BP= Cardiac output x Total peripheral resistance

Clinical classification of hypertension

Category	Systolic (mm Hg)	Diastolic (mm Hg)
Normal	< 130	<85
High normal	130-139	85-89
Hypertension		
Mild (Stage 1)	140-159	90-99
Moderate (Stage 2)	160-179	100-109
• Severe (Stage 3)	180-209	110-119
• Very severe (Stage 4)	210	120
Malignant hypertension	> 200	140

Etiological classification of hypertension

A. Primary essential hypertension

- Genetic factors
- · Racial and environmentalfactors
- Risk factors modifying the course of HT

B. Secondary hypertension

Renal – Renovascular

Renal parenchymal disease

• Endocrine - Adrenocortical hyperfunction

Hyperparathyroidism

Oral contraceptives

- Coarctation of aorta
- Neurogenic

Clinical classification of primary and secondary hypertension

Benign hypertension

- Observed in 95% of patients
- Slow rise in BP taking years to develop

Malignant/ accelerated hypertension

- Observed in 5-10% of patients
- Rapid rise in BP to 200/140 mm Hg or more
- If left untreated, patient's life expectancy decreases

Symptoms

When BP is severe, following symptoms are observed

- Nose bleeding
- Irregular heart beat
- Head ache
- Dizziness
- Fatigue
- Flushed face
- Breathing difficulties
- Strong tendency touinate
- Vertigo, tinnitus, etc.,

Malignant hypertension is characterized by

- Pulsating headache beneath the eye
- Visual disturbance
- Nausea and vomiting
- Disturbed sleep

Pathogenesis

BPistheproductof

- Cardiac output
- Total peripheral vascular resistance
- Cardiac output
- Volume of blood that circulates through systemic blood vessels each minute
 - Dependent on stroke volume (SV)
 - SV Volume of blood ejected by the left ventricle during each contraction
 - Peripheral resistance depends on

Viscosity of blood

Diameter of the blood vessel

Compliance

- High viscosity high pressure to pass through vascular bed
- High pressure to pass through constricted and non-complaint blood vessels

BP is controlled by

- Neural component
- Peripheral auto regulatory mechanism
- Humoral mechanism
- Vascular endothelial mechanism

Neural component

• Both CNS & ANS controls BP

Centers in CNS are

Vasomotor center in Medulla

Vagal nucleus

Area postrema

Nuclues tractus solitarii

Maintenance of BP by sympathetic nervous system through and adrenergic receptors

- ++ post synaptic 1 receptors vasoconstriction BF
- ++ pre synaptic 2 receptors negative feedback on NA release
- ++ 1 in heart HR and contractility
- ++ 2 in arterioles and venules vasodilation

Change in BP senses by barro receptors in carotid artery and aortic arch

- Respond to change in arterial pressure
- Transmitted to brain through IX cranial nerve and vagus nerve
- discharge from barroreceptors depression of vasomotor center excitation of nucleus ambiguus – reverts change in BP

Peripheral auto regulatory mechanism

- Normal case volume and pressure adaptive mechanism of kidney maintains BP
- BP adaptation of kidney more Na⁺ and H₂O retention
- BP adaptation of kidney Na⁺ and H₂O excretion blood volume & cardiac output

Humoral mechanism

- Renin Angiotensin Aldosteronesystem
- Natriuretic hormone
- Insulin resistance and hyperinsulinemia

Renin-Angiotensin-aldosterone system

Natriuretic hormone

- Inhibits Na⁺/K⁺ ATP ase
- Interferes with Na⁺ transport across cell membrane
- Na⁺ in body fluids Natriuretic hormone urinary excretion of Na⁺ and H₂O
- Blocks active transport of Na⁺ out of the walls of arterioles vascular tone and BP

Insulin resistance and hyper insulinemia

- Causes Na⁺ retention
- Increases sympathetic activity
- Increases vascular resistance
- Increases BP

Vascular endothelial mechanism

- Regulates blood vesseltone
- Vasodilating substances Nitric oxide, Prostacyclin (Pl₂) and bradykinin Hypotension
- Vasoconstrictors Angiotensin II and Endothelin I BP

Effect of dietary Na⁺ Ca²⁺ K⁺ on BP

- intra cellular Ca²⁺ alters smooth muscle function on blood vessels Peripheral vascular resistance
- K⁺ depletion Peripheral vascular resistance
- Na⁺ in body fluids & in arterial wall BP

Complications of HT

- Blood vessels Large arterioles dialatess
 - Smaller arterioles get damaged
- Eye Arterial narrowing, haemmorhage
- Heart Hypertropy of left ventricles, heart failure
- Kidney Nephrosclerosis, renal damage, death in uremia
- Brain Rupture of damaged blood vessels, encephalopathy, cerebral edema

Summary

- Persistently elevated arterial blood pressure is called hypertension
- Hypertension can be classified as benign or malignant or accelerated hypertension
- HT can also be classifies as primary and secondary HT based on etiology
- BP is controlled by neuronal component, humoral mechanism, peripheral autoregultory mechanism and vascular endothelial mechanism
- Any defects in the functioning of these mechanisms leads to the development of HT
- HT is affects kidneys, blood vessels, brain and predisposed to many cardiovascular diseases