CIRCLE DRAWING:

Given: Center: (h,k) Radius: r Equation: $(\mathrm{x}-\mathrm{h}) 2+(\mathrm{y}-\mathrm{k}) 2=\mathrm{r} 2$
To simplify we'll translate origin to center Simplified Equation:
$\mathrm{x} 2+\mathrm{y} 2=\mathrm{r} 2$
Only considers circles centered at the origin with integer radii.
Can apply translations to get non-origin centered circles.
Explicit equation: $\mathrm{y}=+/-\operatorname{sqrt}\left(R^{2}-X^{2}\right)$
Implicit equation: $\mathrm{F}(\mathrm{x}, \mathrm{y})=X^{2}+Y^{2}-R^{2}=0$
Note: Implicit equations used extensively for advanced modeling Use of Symmetry:
Only need to calculate one octant. One can get points in the other 7 octants.
Only need consider 450 of the circle use symmetry to find other points.

Circle has 8-fold symmetry

So only need to plot points in 1st octant
$\Delta x>\Delta y$ so step in x direction

- A circle is a symmetrical figure.
- Any circle-generating algorithm can take advantage of the circle's symmetry to plot eight points for each value that the algorithm calculates.
- Eight-way symmetry is used to reflecting each calculated point around each 450 axis.
- For example, if point 1 were calculated with a circle algorithm, seven more points could be found by reflection.

Defining a Circle

- There are two standard methods of mathematically defining a circle centered at the origin.
- Polynomial Method • Trigonometric Method
- The first method (Polynomial Method) defines a circle with the second-order polynomial equation: y $2=r 2-x 2$,
where $x=$ the x coordinate,
$\mathrm{y}=$ the y coordinate and
$\mathrm{r}=$ the circle radius.
- With this method, each x coordinate in the sector, from 900 to 450 , is found by stepping
- x from 0 to $r /(\sqrt{2})$, and
- each y coordinate is found by evaluating $\sqrt{ }(\mathrm{r} 2-\mathrm{x} 2)$ for each step of x .
- This is a very inefficient method, however, because for each point both x and r must be squared and subtracted from each other, then the square root of the result must be found.
The second method (Trigonometric Method) of defining a circle makes use of trigonometric functions: $\mathrm{x}=\mathrm{r} \cos \alpha$ and $y=r \sin \alpha$
where $\alpha=$ current angle
$r=$ circle radius
$\mathrm{x}=\mathrm{x}$ coordinate
$y=y$ coordinate
- By this method, α is stepped from 0 to $\pi / 4$, and each value of x and y is calculated.
- However, computation of the values of $\sin \alpha$ and $\cos \alpha$ is even more timeconsuming than the calculations required by the first method.

MIDPOINT CIRCLE GENERATION ALGORITHM

 we summarize the algorithm- A method for direct distance Implicit Definition comparison is to test the halfway $f(x, y)=x^{2}+y^{2}-r^{2}=0$ position between two pixels to determine if this midpoint is inside or outside the circle boundary.
- This method is more easily applied to other conics, and for an integer circle

$$
\text { e.g. } \quad+
$$

$$
f(0,0)=-r^{2}<0 \text { Inside }
$$

$$
f(r, 0)=0 \text { on the curve }
$$

$$
f(r, r)=+r^{2}>0 \text { outside }
$$ radius.

- we sample at unit intervals and determine the closest pixel position to the specified circle path at each step.
- Along the circle section from $\mathrm{x}=0$ to $\mathrm{x}=\mathrm{y}$ in the first quadrant, the slope of the curve varies from 0 to -1 .
- Therefore, we can take unit steps in the positive x direction over this octant and use a decision parameter to determine which of the two possible y positions is closer to the circle path at each step.

To apply the midpoint method. we define a circle function:

$$
\mathbf{f}_{\text {circle }}(\mathbf{x}, \mathbf{y})=\mathbf{x}^{2}+\mathbf{y}^{2}-\mathbf{r}^{2}
$$

Any point (x, y) on the boundary of the circle with radius r satisfies the equation $\mathbf{f}_{\text {circle }}(\mathbf{x}, \mathbf{y})=\mathbf{0}$.
If $\mathbf{f}_{\text {circle }}(\mathbf{x}, \mathbf{y})<\mathbf{0}$, the point is inside the circle boundary, If $f_{\text {circle }}(\mathbf{x}, \mathbf{y})>\mathbf{0}$, the point is outside the circle boundary, If $\mathbf{f}_{\text {circle }}(\mathbf{x}, \mathbf{y})=\mathbf{0}$, the point is on the circle boundary.

Mid-point Circle Algorithm Calculating p_{k}

First, set the pixel at ($x k, y k$), next determine whether the pixel $(\boldsymbol{x k}+\mathbf{1}, \boldsymbol{y k})$ or the pixel $(\boldsymbol{x} \boldsymbol{k}+\mathbf{1}, \boldsymbol{y k}-\mathbf{1})$ is closer to the circle using: $p_{k}=f_{\text {circle }}(x k+1, y k-1 / 2)$

$$
=(x k+1)^{2}+(y k-1 / 2)^{2}-r^{2}
$$

Now Calculating \boldsymbol{P}_{k+1}
$P_{k+1}=$ fcircle $(x k+1+1, y k+1-1 / 2)$ $=[(x k+1)+1]^{2}+(y k+1-1 / 2)^{2}-r^{2}$

Or

$\mathrm{Pk}+1=\mathrm{pk}+2(\mathrm{xk}+1)+\left(\mathrm{y}^{2} \mathrm{k}+1-\mathrm{y}^{2} \mathrm{k}\right)-(\mathrm{yk}+1-\mathrm{yk})+1$
Now Calculating p_{0}
$p_{0}=$ fcircle $(1, r-1 / 2)=1+(r-1 / 2)^{2}-r^{2}$ or
$p_{0}=5 / 4-r \cong 1-r$
2. At each $\mathbf{x}_{\mathbf{k}}$ position, starting at $\mathbf{k}=\mathbf{0}$, perform the following test: If $\mathbf{p}_{\mathbf{k}}<\mathbf{0}$, plot $\left(\mathbf{x}_{\mathrm{k}}+\mathbf{1}, \mathbf{y}_{\mathrm{k}}\right)$ and $\mathbf{p}_{\mathrm{k}+1}=\mathbf{p}_{\mathrm{k}}+\mathbf{2} \mathbf{x}_{\mathrm{k}+1}+\mathbf{1}$,

Otherwise, plot $\left(\mathbf{x}_{\mathbf{k}}+\mathbf{1}, \mathbf{y}_{\mathrm{k}}-\mathbf{1}\right)$ and $\mathbf{p}_{\mathrm{k}+1}=\mathbf{p}_{\mathrm{k}}+2 \mathrm{x}_{\mathrm{k}+1}+\mathbf{1}-\mathbf{2} \mathbf{y}_{\mathrm{k}+1}$,
where $\mathbf{2} \mathbf{x}_{\mathrm{k}+1}=\mathbf{2} \mathrm{x}_{\mathrm{k}}+\mathbf{2}$ and $\mathbf{2} \mathbf{y}_{\mathrm{k}+1}=\mathbf{2} \mathbf{y}_{\mathrm{k}}-\mathbf{2}$.

Mid-point Circle Algorithm - Steps

1. Input radius \mathbf{r} and circle center $\left(\mathbf{x}_{\mathbf{c}}, \mathbf{y}_{\mathbf{c}}\right)$. set the first point $\left(x_{0}, y_{0}\right)=(0, r)$.
2. Calculate the initial value of the decision parameter as

$$
\mathrm{p}_{0}=1-\mathrm{r} .
$$

2. At each $\mathbf{x}_{\mathbf{k}}$ position, starting at $\mathbf{k}=\mathbf{0}$, perform the following test:
a) If $\mathbf{p}_{\mathbf{k}}<\mathbf{0}$, plot $\left(\mathbf{x}_{\mathrm{k}}+\mathbf{1}, \mathbf{y}_{\mathbf{k}}\right)$ and $\mathbf{p}_{\mathrm{k}+\mathbf{1}}=\mathbf{p}_{\mathbf{k}}+\mathbf{2} \mathbf{x}_{\mathrm{k}+\mathbf{1}}+\mathbf{1}$,

$$
=p_{k}+2 x_{k}+3
$$

b) for $\mathbf{p}_{\mathbf{k}}>=\mathbf{0}$ Otherwise,
$\operatorname{plot}\left(\mathbf{x}_{\mathrm{k}}+\mathbf{1}, \mathbf{y}_{\mathrm{k}}-1\right)$ and $\mathbf{p}_{\mathrm{k}+1}=\mathbf{p}_{\mathrm{k}}+2 \mathbf{x}_{\mathrm{k}+1}+\mathbf{1}-2 \mathbf{y}_{\mathrm{k}+1}$,

$$
=p_{k}+2 x_{k+1}+3-2 y_{k}+2
$$

where $2 \mathrm{x}_{\mathrm{k}+\mathbf{1}}=\mathbf{2} \mathrm{x}_{\mathrm{k}}+\mathbf{2}$ and $\mathbf{2} \mathrm{y}_{\mathrm{k}+1}=\mathbf{2} \mathrm{y}_{\mathrm{k}}-\mathbf{2}$.
(Example): Given a circle radius $r=10$, demonstrate the midpoint circle algorithm by determining positions along the circle octant in the first quadrant from $\mathrm{x}=0$ to $\mathrm{x}=\mathrm{y}$.

Solution:

$\mathrm{p}_{0}=1-\mathrm{r}=-9$
Plot the initial point $\left(\mathrm{x}_{0}, \mathrm{y}_{0}\right)=(0,10)$
a) If $\mathbf{p}_{\mathbf{k}}<\mathbf{0}, \operatorname{plot}\left(\mathbf{x}_{\mathbf{k}}+\mathbf{1}, \mathbf{y}_{\mathbf{k}}\right)$ and $p_{k+1}=p_{k}+2 x_{k+1}+\mathbf{1}$,
$=\mathrm{pk}+2 \mathrm{xk}+3$
b) for $\mathbf{p}_{\mathbf{k}}>=\mathbf{0}$ Otherwise, plot $\left(\mathbf{x}_{\mathbf{k}}+\mathbf{1}, \mathbf{y}_{\mathbf{k}}-\mathbf{1}\right)$ and $\mathbf{p}_{\mathrm{k}+1}$
$=p_{k}+2 x_{k+1}+1-2 y_{k+1}$,
$p_{k}+2 x_{k+1}+3-2 y_{k}+2$

K	P_{k}	$\left(x_{k+1}\right.$	y_{k+1}
		0	10
0	-9	1	10
1	-6	2	10
2	-1	3	10
3	6	4	9
4	-3	5	9
5	8	6	8
6	5	7	7

Example (2) Given a circle radius $r=15$, demonstrate the midpoint circle algorithm by determining positions along the circle octant in the first quadrant from $\mathrm{x}=0$ to $\mathrm{x}=$ y.

$$
p_{0}=1-r=-14
$$

plot the initial point

$$
\left(x_{0}, y_{0}\right)=(0,15),
$$

a) If $\mathbf{p}_{\mathbf{k}}<\mathbf{0}$, plot $\left(\mathbf{x}_{\mathbf{k}}+\mathbf{1}, \mathbf{y}_{\mathbf{k}}\right)$ and $p_{k+1}=p_{k}+2 x_{k+1}+1$,
$=\mathrm{pk}_{\mathrm{k}}+2 \mathrm{xk}+3$
b) for $\mathbf{p}_{\mathbf{k}}>=\mathbf{0}$ Otherwise,
plot $\left(\mathbf{x}_{\mathbf{k}}+\mathbf{1}, \mathbf{y}_{\mathbf{k}}-\mathbf{1}\right)$ and $\mathbf{p}_{\mathrm{k}+1}$
$=\mathrm{p}_{\mathrm{k}}+2 \mathrm{x}_{\mathrm{k}+1}+\mathbf{1}-\mathbf{2} \mathrm{y}_{\mathrm{k}+1}$,

$$
p_{k}+2 x_{k+1}+3-2 y_{k}+2
$$

K	P_{k}	x_{k+1}	y_{k+1}
		0	15
0	-14	1	15
1	-11	2	15
2	-6	3	15
3	1	4	14
4	-18	5	14
5	-7	6	14
6	6	7	13
7	-5	8	13
8	12	9	12
9	7	10	11
10	6	11	10

