CIRCLE DRAWING:

- Given: Center: (h,k) Radius: r Equation: $(x-h)^2 + (y-k)^2 = r^2$ To simplify we'll translate origin to center Simplified Equation: $x^2 + y^2 = r^2$
- Only considers circles centered at the origin with integer radii. Can apply translations to get non-origin centered circles. Explicit equation: $y = +/- \operatorname{sqrt}(R^2 - X^2)$ Implicit equation: $F(x,y) = X^2 + Y^2 - R^2 = 0$
- Note: Implicit equations used extensively for advanced modeling Use of Symmetry:
- Only need to calculate one octant.
- One can get points in the other 7 octants.
- Only need consider 450 of the circle use symmetry to find other points.

Circle has 8-fold symmetry So only need to plot points in 1st octant $\Delta x > \Delta y$ so step in x direction

- A circle is a symmetrical figure.
- Any circle-generating algorithm can take advantage of the circle's symmetry to plot eight points for each value that the algorithm calculates.
- Eight-way symmetry is used to reflecting each calculated point around each 450 axis.
- For example, if point 1 were calculated with a circle algorithm, seven more points could be found by reflection.

Defining a Circle

- There are two standard methods of mathematically defining a circle centered at the origin.
- Polynomial Method Trigonometric Method
- The first method (**Polynomial Method**) defines a circle with the second-order polynomial equation: $y = r^2 x^2$, where x = the x coordinate,
- y = the y coordinate and
- r = the circle radius.

- With this method, each x coordinate in the sector, from 900 to 450, is found by stepping
- x from 0 to $r/(\sqrt{2})$, and
- each y coordinate is found by evaluating $\sqrt{(r_2 x_2)}$ for each step of x.
- This is a very inefficient method, however, because for each point both x and r must be squared and subtracted from each other, then the square root of the result must be found.
- The second method (**Trigonometric Method**) of defining a circle makes use of trigonometric functions: $x = r \cos \alpha$
- and $y = r \sin \alpha$
- where α = current angle
- r = circle radius
- x = x coordinate
- y = y coordinate
- By this method, α is stepped from 0 to $\pi/4$, and each value of x and y is calculated.
- However, computation of the values of sin α and cos α is even more timeconsuming than the calculations required by the first method.

MIDPOINT CIRCLE GENERATION ALGORITHM

we summarize the algorithm

- A method for direct distance comparison is to test the halfway position between two pixels to determine if this midpoint is inside or outside the circle boundary.
- This method is more easily applied to other conics, and for an integer circle radius.
- we sample at unit intervals and determine the closest pixel position to the specified circle path at each step.
- Along the circle section from x = 0 to x = y in the first quadrant, the slope of the curve varies from 0 to 1.
- Therefore, we can take unit steps in the positive x direction over this octant and use a decision parameter to determine which of the two possible y positions is closer to the circle path at each step. ⁴

 $\frac{\text{Implicit Definition}}{f(x,y) = x^2 + y^2 - r^2 = 0}$

e.g. T $f(0,0) = -r^{2} < 0 \text{ Inside}$ f(r,0) = 0 On the curve $f(r,r) = +r^{2} > 0 \text{ Outside}$ To apply the midpoint method. we define a circle function:

$$f_{\text{circle}}(\mathbf{x}, \mathbf{y}) = \mathbf{x}^2 + \mathbf{y}^2 - \mathbf{r}^2$$

Any point (x, y) on the boundary of the circle with radius r satisfies the equation $f_{circle}(x, y) = 0$. If $f_{circle}(x, y) < 0$, the point is inside the circle boundary, If $f_{circle}(x, y) > 0$, the point is outside the circle boundary, If $f_{circle}(x, y) = 0$, the point is on the circle boundary.

Mid-point Circle Algorithm Calculating p_k

First, set the pixel at (xk, yk), next determine whether the pixel (xk + 1, yk) or the pixel (xk + 1, yk - 1) is closer to the circle using: $p_k = fcircle (xk + 1, yk - \frac{1}{2})$

 $= (xk + 1)^2 + (yk - \frac{1}{2})^2 - r^2$

Now Calculating P_{k+1}

$$P_{k+1} = fcircle (xk + 1 + 1, yk + 1 - \frac{1}{2})$$

= [(xk + 1) + 1]² + (yk + 1 - \frac{1}{2})² - r²

Or

 $Pk + 1 = pk + 2(xk + 1) + (y^2k + 1 - y^2k) - (yk + 1 - yk) + 1$ Now Calculating p_0

 $p_0 = fcircle (1, r - \frac{1}{2}) = 1 + (r - \frac{1}{2})^2 - r^2 or$

 $\mathbf{p}_0 = 5 / 4 - \mathbf{r} \cong 1 - \mathbf{r}$

2. At each x_k position, starting at k = 0, perform the following test: If $p_k < 0$, plot $(x_k + 1, y_k)$ and $p_{k+1} = p_k + 2x_{k+1} + 1$, Otherwise,

plot
$$(x_k + 1, y_k - 1)$$
 and $p_{k+1} = p_k + 2x_{k+1} + 1 - 2y_{k+1}$,
where $2x_{k+1} = 2x_k + 2$ and $2y_{k+1} = 2y_k - 2$.

6

Mid-point Circle Algorithm – Steps

- 1. Input radius **r** and circle center $(\mathbf{x}_c, \mathbf{y}_c)$. set the first point $(x_0, y_0) = (0, r)$.
- 2. Calculate the initial value of the decision parameter as $p_0 = 1 r$.
- 2. At each \mathbf{x}_k position, starting at $\mathbf{k} = \mathbf{0}$, perform the following test: a) If $\mathbf{p}_k < \mathbf{0}$, plot ($\mathbf{x}_k + \mathbf{1}, \mathbf{y}_k$) and $\mathbf{p}_{k+1} = \mathbf{p}_k + 2\mathbf{x}_{k+1} + \mathbf{1}$, $= \mathbf{p}_k + 2\mathbf{x}_{k+3}$
 - b) for $\mathbf{p}_k \ge 0$ Otherwise, plot $(\mathbf{x}_k + 1, \mathbf{y}_k - 1)$ and $\mathbf{p}_{k+1} = \mathbf{p}_k + 2\mathbf{x}_{k+1} + 1 - 2\mathbf{y}_{k+1}$, $= \mathbf{p}_k + 2\mathbf{x}_{k+1} + 3 - 2\mathbf{y}_k + 2\mathbf{y}_k$

where $2x_{k+1} = 2x_k + 2$ and $2y_{k+1} = 2y_k - 2$.

- (Example): Given a circle radius r = 10, demonstrate the midpoint circle algorithm by determining positions along the circle octant in the first quadrant from x = 0 to x = y. Solution:
- $p_0 = 1 r = -9$ Plot the initial point (x₀, y₀)=(0,10)
- a) If $p_k < 0$, plot $(x_k + 1, y_k)$ and $p_{k+1} = p_k + 2x_{k+1} + 1$,

 $= p_k+2x_k+3$

b) for $\mathbf{p}_k \ge 0$ Otherwise, plot $(\mathbf{x}_k + 1, \mathbf{y}_k - 1)$ and $\mathbf{p}_{k+1} = \mathbf{p}_k + 2\mathbf{x}_{k+1} + 1 - 2\mathbf{y}_{k+1}$, $= \mathbf{p}_k + 2\mathbf{x}_{k+1} + 3 - 2\mathbf{y}_k + 2$

K	P_k	(<i>x</i> _{<i>k</i>+1}	y _{k+1}
		0	10
0	-9	1	10
1	- 6	2	10
2	-1	3	10
3	6	4	9
4	- 3	5	9
5	8	6	8
6	5	7	7

Example (2) Given a circle radius r = 15, demonstrate the midpoint circle algorithm by determining positions along the circle octant in the first quadrant from x = 0 to x = y.

 $p_{0} = 1 - r = -14$ plot the initial point $(x_{0}, y_{0}) = (0, 15),$ a) If $p_{k} < 0$, plot $(x_{k} + 1, y_{k})$ and $p_{k+1} = p_{k} + 2x_{k+1} + 1,$

 $= p_k + 2x_k + 3$

b) for $\mathbf{p}_k \ge 0$ Otherwise,

plot $(x_k + 1, y_k - 1)$ and $p_{k+1} = p_k + 2x_{k+1} + 1 - 2y_{k+1}$,

=

$$\mathbf{p}_{\mathbf{k}} + 2\mathbf{x}_{\mathbf{k}+1} + 3 - 2\mathbf{y}_{\mathbf{k}} + 2$$

K	P _k	X _{k+1}	y _{k+1}
		0	15
0	- 14	1	15
1	- 11	2	15
2	- 6	3	15
3	1	4	14
4	- 18	5	14
5	-7	6	14
6	6	7	13
7	- 5	8	13
8	12	9	12
9	7	10	11
10	6	11	10 °