Bresenham's circle drawing algorithm:

It is not easy to display a continuous smooth arc on the computer screen as our computer screen is made of pixels organized in matrix form. So, to draw a circle on a computer screen we should always choose the nearest pixels from a printed pixel so as they could form an arc.
Now, how to calculate the next pixel location from a previously known pixel location (x, y). In Bresenham's algorithm at any point (x, y) we have two option either to choose the next pixel in the east i.e. $(x+1, y)$ or in the south east i.e. $(x+1, y-1)$.

This can be decided by the decision parameter d .

- If $\mathrm{d}<=0$, then $\mathrm{N}(\mathrm{X}+1, \mathrm{Y})$ is to be chosen as next pixel.
- If $\mathrm{d}>0$, then $\mathrm{S}(\mathrm{X}+1, \mathrm{Y}-1)$ is to be chosen as the next pixel.

Let's say our circle is at some random pixel P whose coordinates are (xk, yk). Now we need to find out our next pixel.

The shortest of d 1 and d 2 will help us Decide our next pixel.
note- $\mathrm{X}_{\mathrm{k}+1}=\mathrm{X}_{\mathrm{k}}+1$
As X_{k+1} is the next consecutive pixely ${ }^{Y} \mathrm{X}_{\mathrm{k}}$ similarly $y_{k-1}=y_{k}-1$
Equation of Circle, Radius r $x^{\wedge} 2+y^{\wedge} 2=r^{\wedge} 2$
Function of Circle at N

$$
\mathrm{F}(\mathrm{~N})=(\mathrm{xk}+1)^{\wedge} 2+\left(\mathrm{yk}^{)^{\wedge}} 2-\mathrm{r}^{\wedge} 2(\text { Positive })\right.
$$

Function of Circle at S
$\mathrm{F}(\mathrm{S})=(\mathrm{x} k+1)^{\wedge} 2+\left(\mathrm{y}_{\mathrm{k}-1}\right)^{\wedge} 2-\mathrm{r}^{\wedge} 2$ (Negative)
Now we need a decision parameter which help us decide the next pixel
Say Dk
And, $\mathrm{D}_{\mathrm{k}}=\mathrm{F}(\mathrm{N})+\mathrm{F}(\mathrm{S})$
So if $D_{k}<0$ that means the negative $F(S)$ is bigger then the positive $\mathrm{F}(\mathrm{N})$, that implies Point N is closer to the circle than point S . So we will select pixel N as our next pixel.
and if $\mathrm{D}_{\mathrm{k}}>0$ that means positive $\mathrm{F}(\mathrm{N})$ is bigger and S is more closer as $F(S)$ is smaller. So we will Select S as our next pixel.

Now lets find D_{k}

$$
\begin{align*}
& \mathrm{D}_{\mathrm{k}}=(\mathrm{xk}+1)^{\wedge} 2+(\mathrm{yk})^{\wedge} 2-\mathrm{r}^{\wedge} 2+(\mathrm{xk}+1)^{\wedge} 2+\left(\mathrm{yk}^{2}-1\right)^{\wedge} 2-\mathrm{r}^{\wedge} 2 \\
&\left(\text { replacing } \mathrm{x}_{\mathrm{k}+1} \text { with } \mathrm{xk}+1 \text { and } \mathrm{yk}-1 \text { with } \mathrm{yk}_{\mathrm{k}}-1\right) \\
&=2\left(\mathrm{xk}_{\mathrm{k}}+1\right)^{\wedge} 2+\left(\mathrm{yk}^{\wedge}\right)^{2}+\left(\mathrm{yk}_{\mathrm{k}}-1\right)^{\wedge} 2-2 \mathrm{r}^{\wedge} 2----(\mathrm{i}) \tag{i}
\end{align*}
$$

Now lets find $\mathrm{D}_{\mathrm{k}+1}$ (Replacing every k with $\mathrm{k}+1$ in eq. i)
$\mathrm{D}_{\mathrm{k}+1}=2\left(\mathrm{xk}_{\mathrm{k}+1}+1\right)^{\wedge} 2+\left(\mathrm{y}_{\mathrm{k}+1}\right)^{\wedge} 2+\left(\mathrm{y}_{\mathrm{k}+1}-1\right)^{\wedge} 2-2 \mathrm{r}^{\wedge} 2$
(Replacing $\mathrm{x}_{\mathrm{k}+1}$ with $\mathrm{xk}_{\mathrm{k}}+1$ but now we can't replace $\mathrm{y} k+1$ because we don't know the exact value of y_{k})

$$
\begin{equation*}
=2(\mathrm{xk}+2)^{\wedge} 2+\left(\mathrm{y}_{\mathrm{k}+1}\right)^{\wedge} 2+\left(\mathrm{y}_{\mathrm{k}+1}-1\right)^{\wedge} 2-2 \mathrm{r}^{\wedge} 2 \tag{ii}
\end{equation*}
$$

Now to find out the decision parameter of next pixel i.e. D_{k+1} We need to find $D_{k+1}-D_{k}=(i i)-(i)$

$$
=4 \mathrm{xk}+2\left(\mathrm{y}_{\mathrm{k}+1}\right)^{\wedge} 2-2 \mathrm{y}_{\mathrm{k}+1}-2(\mathrm{yk})^{\wedge} 2+2 \mathrm{yk}_{\mathrm{k}}+6
$$

$\mathrm{D}_{\mathrm{k}+1}=\mathrm{D}_{\mathrm{k}}+4 \mathrm{xk}+2\left(\mathrm{y}_{\mathrm{k}+1}\right)^{\wedge} 2-2 \mathrm{y}_{\mathrm{k}+1}-2(\mathrm{yk})^{\wedge} 2+2 \mathrm{yk}^{2}+6----$ (iii)

- If $\left(\mathrm{D}_{\mathrm{k}}<0\right)$ then we will choose N point as discussed. i.e. $(\mathrm{xk}+1, \mathrm{yk})$
next y coordinate is y_{k} i.e. $y_{k+1}=y_{k}$, putting y_{k} in (iii)
now, $\mathrm{D}_{\mathrm{k}+1}=\mathrm{D}_{\mathrm{k}}+4 \mathrm{xk}_{\mathrm{k}}+2(\mathrm{yk})^{\wedge} 2-2 \mathrm{yk}_{\mathrm{k}}-2(\mathrm{yk})^{\wedge} 2+2 \mathrm{y}_{\mathrm{k}}+6$
$=D_{k}+4 \mathrm{xk}+6$

If $\left(D_{k}>0\right)$ then we will choose S point. i.e. $\left(x_{k+1}, y_{k+1}\right)$
Now we know $\mathrm{yk}_{\mathrm{k}+1}=\mathrm{yk}-1$

$$
D_{k+1}=D_{k}+4\left(x k-y_{k}\right)+10
$$

Now to find initial decision parameter means starting point that is $(0, \mathrm{r})$, value of y is r Putting ($0, r$) in (i)
$\mathrm{D}_{\mathrm{k}}=2(\mathrm{xk}+1)^{\wedge} 2+(\mathrm{yk})^{\wedge} 2+(\mathrm{yk}-1)^{\wedge} 2-2 \mathrm{r}^{\wedge} 2$
$\mathrm{D} 0=2(0+1)^{\wedge} 2+\mathrm{r}^{\wedge} 2+(\mathrm{r}-1)^{\wedge} 2-2 \mathrm{r}^{\wedge} 2$

$$
=3-2 \mathrm{r}
$$

Step 1: Get the Radius of Circle R And Coordinates of centre of circle (Xc, Yc)
Step 2: X and Y are going to be plotted points $\operatorname{Set} \mathrm{X}=0$ and $\mathrm{Y}=\mathrm{R}$
Step 3: $\mathrm{D}=3-2 \mathrm{R}$ (Initial decision Parameter)
Step 4: Plot Circle (Xc, Yc, X, Y)

- Step 5: if $\mathrm{D}<0$ Then $\mathrm{D}=\mathrm{D}+4 \mathrm{X}+6$
$\mathrm{X}=\mathrm{X}+1$
$\mathrm{Y}=\mathrm{Y}$
- $\mathrm{D}>=0$ then $\mathrm{D}=\mathrm{D}+4(\mathrm{X}-\mathrm{Y})+10$
$\mathrm{X}=\mathrm{X}+1$
$\mathrm{Y}=\mathrm{Y}-1$
Step 6: Check, if $\mathrm{X}=\mathrm{Y}:$ Stop/Exit

Advantages

- It is a simple algorithm.
- It can be implemented easily
- It is totally based on the equation of circle i.e. $x^{2}+y^{2}=r^{2}$ Disadvantages
- There is a problem of accuracy while generating points.
- This algorithm is not suitable for complex and high graphic images

Example): Given a circle radius $r=10$, demonstrate the Bresenham's circle algorithm by determining positions along the circle octant in the first quadrant from $x=0$ to $x=y$.
Step 1: Set $\mathrm{X}=0$ and $\mathrm{Y}=\mathrm{R}$
Step 2: $D=3-2 R$
(Initial decision Parameter)
Step 3: Plot Circle (0,r)

- if $\mathrm{D}<0$ Then

$$
\begin{aligned}
& \mathrm{D}=\mathrm{D}+4 \mathrm{X}+6 \\
& \mathrm{X}=\mathrm{X}+1 \\
& \mathrm{Y}=\mathrm{Y}
\end{aligned}
$$

- D >=0 then

$$
\begin{aligned}
& \mathrm{D}=\mathrm{D}+4(\mathrm{X}-\mathrm{Y})+10 \\
& \mathrm{X}=\mathrm{X}+1 \\
& \mathrm{Y}=\mathrm{Y}-1
\end{aligned}
$$

K	P_{k}	x_{k+1}	y_{k+1}
		0	10
0	-17	1	10
1	-11	2	10
2	-1	3	10
3	13	4	9
4	-5	5	9
5	17	6	8
6	11	7	7

