Mid-Point Line Generation Algorithm

Given coordinate of two points A(x1, y1) and B(x2, y2) such that x1 < x2 and y1 < y2. The task to find all the intermediate points required for drawing line AB on the computer screen of pixels. Note that every pixel has integer coordinates. for any given/calculated previous pixel P(X_k, Y_k), there are two candidates for the next pixel closest to the line, Right(X_k+1, Y_k) and Left(X_k+1, Y_k+1) In Mid-Point algorithm we do following.

Find middle of two possible next points. Middle of $R(X_{\nu}+1, Y_{\nu})$ and $(X_{\nu}+1, Y_{\nu}) = M(X_{\nu}+1/2)$

 $L(X_k+1, Y_k+1)$ is $M(X_{k+1}, Y_k+1/2)$. If M is above the line, then choose R as next point. If M is below the line, then choose L as next point.

How to find if a point is above a line or below a line?

Below are some assumptions to keep algorithm simple.

- We draw line from left to right.
- x1 < x2 and y1 < y2
- Slope of the line is between 0 and 1. We draw a line from lower left to upper right.

Х

How to efficiently find new value of d from its old value? For simplicity, let as write F(x, y) as ax + by + c. Where a = dy

b = -dx

c = B*dx, We got these values from above equation (1) **Case 1:** If R is chosen then for next point :

 $\begin{aligned} d_{k+1} &= F(X_p + 2, Y_{p+1}/2) \\ &= a(X_p + 2) + b(Y_{p+1}/2) + c \\ d_k &= a(X_{p+1}) + b(Y_{p+1}/2) + c \\ \text{Difference (Or delta) of two distances:} \\ \Delta d &= d_{k+1} - d_k \\ &= a(X_p + 2) - a(X_{p+1}) + b(Y_{p+1}/2) - b(Y_{p+1}/2) + c - c \\ &= a \end{aligned}$

Therefore, $d_{k+1} = d_k + dy$. (as a = dy)

Case 2: If L is chosen then for next point : $d_{k+1} = F(X_p+2, Y_p+3/2)$ $= a(X_p+2) + b(Y_p+3/2) + c$ $d_k = a(X_p+1) + b(Y_p+1/2) + c$ Difference (Or delta) of two distances: $\Delta d = d_{k+1} - d_k$ $= a(X_p+2) - a(X_{p+1}) + b(Y_p+3/2) - b(Y_p+1/2) + c-c$ = a + b

Therefore, $d_{k+1} = d_k + dy - dx$. (as a = dy, b = -dx) **Calculation For initial value of decision parameter d0:** d0 = F(X1+1, Y1+1/2) = a(X1+1) + b(Y1+1/2) + c = aX1+bY1 + c + a + b/2 = F(X1,Y1) + a + b/2 = a + b/2 (as F(X1, Y1) is on the circle so = 0) d0 = dy - dx/2. (as a = dy, b = -dx) **PRACTICE PROBLEMS BASED ON MID POINT LINE DRAWING ALGORITHM-Problem-01:** Calculate the points between the starting coordinates (20, 10) and ending coordinates (30, 18).

Solution- Given-

Starting coordinates =
$$(X_0, Y_0) = (20, 10)$$

Ending coordinates = $(X_n, Y_n) = (30, 18)$

<u>Step-01:</u>

Calculate ΔX and ΔY $\Delta X = X_n - X_0 = 30 - 20 = 10$

$$\Delta Y = Y_n - Y_0 = 18 - 10 = 8$$

<u>Step-02:</u>

Calculate $d_{initial}$ $d_o = dy - dx/2 = 8 - 10/2 = 3$ <u>Step-03:</u>

As $d_{initial} \ge 0$, so **case-02** is satisfied than $d_{k+1} = d_k + dy - dx = 1$ Thus,

$$X_{k+1} = X_k + 1 = 20 + 1 = 21$$

 $Y_{k+1} = Y_k + 1 = 10 + 1 = 11$

D _{initia} I	D _{new}	X _{k+1}	Y _{k+1}
		20	10
3	1	21	11
1	-1	22	12
-1	7	23	12
7	5	24	13
5	3	25	14
3	1	26	15
1	-1	27	16
-1	7	28	16
7	5	29	17
5		30	18

Advantages of Mid Point Line Drawing Algorithm-

The advantages of Mid Point Line Drawing Algorithm are-

- Accuracy of finding points is a key feature of this algorithm.
- It is simple to implement.
- It uses basic arithmetic operations.
- It takes less time for computation.
- The resulted line is smooth as compared to other line drawing algorithms.

Disadvantages of Mid Point Line Drawing Algorithm-

The disadvantages of Mid Point Line Drawing Algorithm are-

- This algorithm may not be an ideal choice for complex graphics and images.
- In terms of accuracy of finding points, improvement is still needed.
- There is no any remarkable improvement made by this algorithm.

Problem-02:

Calculate the points between the starting coordinates (5, 9) and ending coordinates (12, 16)

<u>Step-01:</u>

Calculate ΔX and ΔY .

$$\Delta X = X_n - X_0 = 12 - 5 = 7$$

$$\Delta Y = Y_n - Y_0 = 16 - 9 = 7$$

$$\Delta Y = Y_n - Y_0 = 16 - 9 =$$

<u>Step-02:</u>

Calculate d_{initial}

$$d_o = dy - dx/2 = 7 - 7/2 = 3.5$$

<u>Step-03:</u>

As $d_{initial} \ge 0$, so **case-02** is satisfied than $d_{k+1} = d_k + dy - dx = 3.5$ Thus,

$$\begin{split} X_{k+1} &= X_k + 1 = 5 + 1 = 6 \\ Y_{k+1} &= Y_k + 1 = 9 + 1 = 10 \end{split}$$

D _{initial}	D _{new}	X _{k+1}	\mathbf{Y}_{k+1}
		5	9
3.5	3.5	6	10
3.5	3.5	7	11
3.5	3.5	8	12
3.5	3.5	9	13
3.5	3.5	10	14
3.5	3.5	11	15
3.5		12	16

