Steady-state diffusion in multicomponent mixtures

Diffusion in multicomponent system is very complicated, but they can
frequently be handled by using an effective diffusivity.

Where the effective diffusivity of a component can be synthesized from its
binary diffusivities with each of other constituents.

Thus in equation N, + N; is replaced by >, N;, where N is positive if diffusion
is in the same direction as that of A and negative if in the opposite direction
and D,; is replaced by the effective D, y,.
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Where D,; are the binary diffusivities.

D, m May vary considerably from one end of the diffusion path to the other, but

a linear variation with distance can be assumed. For this situation, assume all

but one component is stagnant, then equation becomes,

Where y; is the mole fraction

of component i on an A-free
basis.




Diffusivity prediction in gases

Diffusion coefficient is a significant parameter  which depends upon
temperature, pressure and composition of the components (Advanced kinetic
theory predicts that in the binary system effect of composition is very small).
Diffusivity can be determined experimentally and their dimension is
length?/time.

Hirschfelder-Bird-Sportz developed an empirical relation to determine the
diffusivity for mixtures of non-polar or a polar with non-polar gas
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D,g is the diffusivity, m%/s

T is the absolute temperature, K

M,, Mg is the molecular weight of A and B respectively, kg/kmol
P, is the absolute pressure, N/m?
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€ is the energy of molecular attraction = ,/eA £p
K is the Boltzmann’s constant

f [—KI-] is the collision function
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Table Force constants of gases as determined from viscosity data

Gas gk, K r, nm
Air 78.6 0.3711
CCl, 322.7 0.5947
CH,OH 481.8 0.3626
CH, 148.6 0.3758
CO 91.7 0.3690
CO, 195.2 0.3941
CS, 467 0.4483
C,Hq 215.7 0.4443
C;Hg 237.1 0.5118
CeHg 4123 0.5349 -
Cl, 316 0.4217
HCI 344.7 0.3339
He 10.22 0.2551
H, 59.7 0.2827
H,0 809.1 0.2641
H,S 301.1 0.3623
NH, 558.3 0.2900
NO 116.7 0.3492
N, 71.6 0.3798
N,O 2324 0.3828

106.7 0.3467
3354 0.4112
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Molecular diffusion in Liquids
In the case of diffusion in liquids, C and D,z may vary considerably with respect
to process conditions. Hence equation can be modified to
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Where p is solution density and M is solution molecular weight.

Case 1- Diffusion of liquid A through a stagnant liquid B _
In this case, Ny = 0 and N, = constant. Hence

Dpg ( p ) Xgy — Xg|
N, = (xa1 — Xa2) where XgM =
A [ ZxB,M J M " Al A2 B.M N (sz }
i

XB1

ne(2)e). i |
A Z M), |1-x,
,g“m K A A

uihiiakd



Case 2 — Equimolar counter-diffusion
In the case N, = -N,

Hence, D D
Ny = [TAB) (Ca1 — Ca2) = (TAB) (ﬁ)av (xa1 — Xa2)

Diffusivity Prediction in Liquids

The dimensions for diffusivity in liquids are the same as those for gases.
However, the diffusivity varies appreciably with concentration. For dilute
solutions of nonelectrolytes, Wilke and Chang given the empirical
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where
D, is the diffusivity of A in very dilute solution in solvent B, m%/s
Mpg is the molecular weight of solvent, kg/kmol.
T is the absolute temperature, K
U is the solution viscosity, kg/m-s
v4 is the solute molal volume at normal boiling point, m*/kmol.
= 0.0756 for water as solute.
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@ 1is the association factor for solvent.
= 2.26 for water as solvent
= 1.90 for methanol as solvent
= 1.50 for ethanol as solvent
= 1.00 for unassociated solvents, e.g. benzene and ethyl ether.
The value of v, may be true value or, if necessary, estimated from the data of
Table, except when water is the diffusing solute

Table Atomic and molecular voluroes

Atomic volume, Molecular volume, Atomic volume, Molecular volume,
m? /1000 atoms X 10° m® /kmol X 10° m* /1000 atoms X 10° m® /kmol X 10°
Carbon 148 H, 143 | Oxygen 74 NH, 25.8
Hydrogen 37 O 25.6 In methyl esters 91 H,0 18.9
Chlorine 246 N, 31.2 In higher esters 1I.0  H,S 32.9
Bromine 270  Air 29.9 In acids 120 COS S1.5
Iedine 370 CO 30.7 In methyl ethers 9.9 (|, 484
Sulfur 256 CO, 34.0 In higher ethers 110 Br, 53.2
Nitrogen 156 SO, 448 | Benzene ring: subtracl 15 I, 71.5
In primary amimes  10.5 WNO 23.6 | Naphthalene ring: subtract 30
In secondary amines 120 N,0 364
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The diffusivity in concentrated solutions differs from that in dilute solutions
because of changes in viscosity with concentration and also because of
changes in the degree of nonideality of the solution
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Where D?,p is the diffusivity of A at infinite dilution in B
D°g 4 is the diffusivity of B at infinite dilution in A
Y, activity coefficient (obtained from vapor-liquid equilibrium data as
the ratio (at ordinary pressure) of the real to ideal partial pressures
of A in the vapor in equilibrium with a liquid of concentration x,

Pa_ _ VAP,
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And the derivative (d log v, )/(d log x, ) can be obtained graphically as the slope
of graph of log y, vs.log x,

ol

YA =




Pseudo Steady State Diffusion

In many mass transfer operations, one of the boundaries between the fluids may
move with time. If the length of the diffusion path changes over a period of
time, a pseudo steady state develops. Here, the molar flux is related to the
amount of A leaving the liquid by,

Flux = rate of change of liquid level x molar concentration of A in liquid phase
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Integrating the equation betweent=0,Z=27_andt=t,72=7,
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After integration and simplification,
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Equation is the form of

i.e

y=mx+C
where y = Z,_-Z_,O- and x = (Z, - Zy)
Slope, m = *amCaL
and
Zon Xasa C
Constant C = 0 “BM AL

C DAB‘(xAl - xAz)

Since equation is linear, by plotting t/(Z, — Z,,) against (Z, — Z,), from the slope of
Line, D,g can be calculated, as other parameter of equation are all known. This
equation is called as Winkelmann’s relation.
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Diffusion through a varying cross-sectional area

In the case so far at steady state we have considered N, and J, as constant in the
integrations. In these cases the cross-sectional area A m? through which the
diffusion occurs has been constant with varying distance Z.

In some situations the area A may vary. Then it is convenient to define N, as
N

NA == ——ﬁ

A

Where NA is kg moles of A diffusing per seconds or kg moles/s. At steady state,
N, will be constant but area will be vary.

e Diffusion from sphere

Diffusion from sphere in a gas will be considered. This situation appears
often in such case as the evaporation of a drop of liquid, the evaporation of a
ball of naphthalene, and the diffusion of nutrients to a spherical like
microorganism in a liquid.

In figure shown a sphere of fixed radius r; m in an infinite gas medium.
Component (A) at partial pressure p,, at the surface is diffusing into the
surrounding stagnhant medium (B), where p,, = 0 at some large distance away.
Steady,state diffusion will be assumed.
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The flux N, can be represented by equation, where A is the cross-sectional area
4mr? at point r distance from the center of the sphere, Also NA is a constant at
steady state.

Since this is a case of A diffusing through
stagnant, nondiffusing B. Equation will used
in its differential form and N, will be
equated

- /
N, D,p dp ,

dnr®  RT (1 — p,/P) dr

N, =

dr was substituted for dz. Rearranging and integrating between r; and some
point r, a large distance away,
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Since r, >>r,, 1/r, = 0. Substituting pg,, from equation
N 4 N _D,inP Par — Paz

dnri Ar RTr, PaM

This equation can be simplified further. If p,, is small compared to P (a dilute
gas phase), pgy = P. Also, setting 2r, = D,, diameter, and c,; = p,,/RT, we obtain

2D
N,y = — (Ca1 — C42)
D,
This equation can also be used for liquids, where D,; is the diffusivity of A in
the liquid.
Case:

If the sphere is evaporating, the radius r of the sphere decreases slowly with
time. The equation for the time for the sphere to evaporate completely can be
derived by assuming pseudo-steady state and by equating the diffusion flux
equation to the moles of solid A evaporated per dt time and per unit area as
calculated from material balance.
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Let us consider an evaporating drop that has radius rs at any instant t. Imagine
a thin spherical shell of inner radius r and thickness Ar around the drop as

shown in figure. This is binary system involving diffusion of water vapor (A)
through air (B). Then

Rate of input of A into the thin shell (at r =r) ___;r“ shell
(Arr?)N, |, \lei"’:'—:"%'"':::<\
Rate of output of A from the thin shell (at r = r+ Ar) \ :
(4nr2)NA | r+Ar ,’/ f” ' ! \‘\ ‘\‘\
By steady state mass balance L v AR
@RPINl, = AEr)Nlypnr = 0 R N N
Input Output Accumulation ‘\ g ;o

Dividing both side by Ar and taking the limit Ar 2> 0 ‘\\\\\Shrinking sphere ,/' /
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fm (4n’r2)NA|, —(47["2)NA|,—+£
Ar—0 Ar

-~ -
-

=0= L @4nr’Ny) = 0
dr

4mr’N, = constant = W (say)

Equation is very important result for steady state diffusion through a variable
areaand can be generalized as

(Area)(flux) = constant
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In this case water vapor diffuse out, but air does not diffuse because it is not
soluble in water. So the case corresponds to diffusion of A through non-
diffusing B. since diffusion occur in radical direction, we replace z by r in equ.

_ P D dpy
N4y = (Nsy + Np) P " RT dr

Putting N = 0 and rearranging
___ DpP  dp,
RT(P—py) dr
Putting N, value and rearranging
dpy,  WRT dr

~P-p,  4nDgP
The above equation can be integrated from r = r, (i.e. the surface of the drop)
to r = oo (i.e. far away from the drop) where p, = p,... Here p,. is the vapor

pressure of water at the temperature of the drop and p,. is the partial
pressure of water vapor in the ‘bulk air’.
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Since W is the constant molar rate of mass transfer, it is equal to the rate of
vaporization of the drop at any instant . This rate can be related to the change
in the drop radius by the following equation.

d(4_ 3 Pa Pa 2 drs
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The negative sign is incorporated because the size of the drop decreases with
time. Equating the equations

P2 drs _ AnDpp Pr P~ pre

My ° dt RT P— ps

According to pseudo steady state assumption drop size changes so slowly that
the diffusion of water vapor through the surrounding air occurs virtually at
steady state at all time. The change in drop size over a considerable period of
time can be determined by integrating the above equation. If at time t = 0, the

radius of the drop isr,; and at time t’isr_,
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e Diffusion through a conduit of nonuniform cross-sectional area

Diffusion of component A at steady state through a circular conduit which is
tapered uniformly. At point 1 the radius is r; and at point 2 it is r,. At position z in
the conduit, for A diffusion through stagnant, nondiffusing B,

N = ﬂ _ D 45 dp 4
T RT (1 — pJP) dz
Using the geometry shown, the variable radius r can be
related to position z in the path as follows:

Z — 7,

This value of r is substituted into equation to eliminate r and
the equation integrated.
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Knudsen Diffusion, Surface Diffusion and self diffusion

The kind of diffusion phenomena discussed so far relate to transport in the
presence of a concentration gradient in a continuum.

These are other important diffusional phenomena occur in solids shown in

figures.
O 8 O
Knudsen Diffusion O O
O
The movement of molecules in a mixture is O O OO O O

governed by molecular velocity as well as collision
with other molecules. (a) diffusion in a continuum,
Collision of the diffusing molecules with others
present in the mixture offers the resistance to
diffusion.

If gas diffusion occur in very fine pore, particularly
at a low pressure, the mean free path of the (b) Knudsen diffusion,

molecules may be larger than the diameter of the
passage.

Then collision with wall becomes much more
frequent than collision with other molecules.

(c) surface diffusion.

® An active site O An adsorbed molecule
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The rate of diffusional transport of species is now governed by its molecular
velocity, the diameter of the passage and the gradient of concentration or
partial pressure. This is called ‘Knudsen Diffusion’ and become important if the
pore size is normally below 50 nm.

Such a situation commonly occurs for intra-particle transport in a catalyst
containing fine pores.

A few model have been proposed to describe and quantify Knudsen Diffusion.
A simple approach based on the Kinetic theory of gases yields the following
expression for Knudsen diffusivity.

2
DK — (g) rva

r, = radius of the passage or capillary T = temperature, in K M = molecular weight.

where

172
vr= (SRT) = average velocity of the molecules by virtue of their thermal energy

M




