OPTICAL FIBERS WAVEGUIDE-I

Guided Modes in a Planar Waveguide

m: Mode order

Only discrete values of are allowed in a waveguide

Optical Fiber Waveguide

- □ To understand transmission mechanisms of optical fibers with dimensions approximating to those of a human hair;
 - Necessary to consider the optical waveguiding of a cylindrical glass fiber.
- Fiber acts as an open optical waveguide may be analyzed using simple ray theory **Geometric Optics**
 - > Not sufficient when considering all types of optical fibers
- Electromagnetic Mode Theory for Complete Picture

ELECTROMAGNETIC THEORY

- To obtain an detailed understanding of propagation of light in an optical fiber
 - Light as a variety of EM vibrations E and H fields at right angle to each other and perpendicular to direction of propagation.
 - Necessary to solve Maxwell's Equations
 - Very complex analyses *Qualitative aspects only*

Field distributions in plane E&H waves

• Light as a variety of EM vibrations **E** and **H** at right angle to each other and perpendicular to direction of propagation.

Maxwell's Equations

 Assuming a linear isotropic dielectric material having no currents and free charges

$$\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$$
$$\nabla \times \mathbf{H} = \frac{\partial \mathbf{D}}{\partial t}$$
$$\nabla \cdot \mathbf{D} = 0$$
$$\nabla \cdot \mathbf{B} = 0$$

where $D = \epsilon E$ and $B = \mu H$.

Maxwell's Equations

Substituting for **D** and **B** and taking curl of first equation

$$abla imes (
abla imes \mathbf{E}) = -\mu \frac{\partial}{\partial t} (
abla imes \mathbf{H}) = -\epsilon \mu \frac{\partial^2 \mathbf{E}}{\partial t^2}$$

Using vector identity

$$abla imes (
abla imes \mathbf{E}) =
abla (
abla \cdot \mathbf{E}) -
abla^2 \mathbf{E}$$

We get

$$\nabla^2 \mathbf{E} = \epsilon \mu \, \frac{\partial^2 \mathbf{E}}{\partial t^2}$$

Similarly

$$\nabla^2 \mathbf{H} = \epsilon \mu \frac{\partial^2 \mathbf{H}}{\partial t^2}$$

 \Box Wave equations for each component of the field vectors **E** & **H**.

Concept of Modes

 A plane monochromatic wave propagating in direction of ray path within the guide of refractive index n₁ sandwiched between two regions of lower refractive index n₂

- Wavelength $= \lambda/n_1$
- Propagation constant $\beta = n_1 k$
- Components of β in z and x directions
 - $\beta_z = n_1 k \cos \theta$
 - $\beta_x = n_1 k \sin \theta$
- Constructive interference occurs and standing wave obtained in x-direction
- (a) A plane wave propagating in the guide (b) Interference of plane wave in the guide (forming lowest order mode m=0)

Concept of Modes

- Components of plane wave in x-direction reflected at corecladding interface and interfere
 - Constructive: when *total phase change* after two reflection is equal to 2mπ radians; m an integer Standing wave in x-direction
 - The optical wave is confined within the guide and the electric field distribution in the x-direction does not change as the wave propagate in the z-direction – Sinusoidally varying in z-direction
- * The stable field distribution in the x-direction with only a periodic zdependence is known as a MODE.
 - Specific mode is obtained only when the angle between the propagation vectors or rays and interface have a particular value **Discrete modes** typified by a distinct value of θ
 - Have periodic z-dependence of $exp(-j\beta_z z)$ or commonly $exp(-j\beta z)$
 - Have time dependence with angular frequency ω , i.e. exp (j ω t)

Higher Order Modes

• For monochromatic light fields of angular frequency ω , a mode traveling in positive z-direction has a time and z-dependence given by

Dominant modes propagating in z-direction with electric field distribution in x-direction formed by rays with m=1,2,3

m denotes number of zeros in this transverse pattern.

It also signifies the order of the mode and is known as **mode number**.

^aRay propagation and corresponding TE field patterns of three lower order modes in planar guide.

Wave picture of waveguides

- The step-index profile provide focusing just like lenses and GRIN materials
- The guides modes of the fiber are those that propagate without changing their profile
- The guided modes are those intensity profiles, for which the focusing, due to the index profile, exactly matches the diffraction
- In the core is small, only one such mode exists (single mode fiber)

TE and TM modes

• **Transverse Electric mode (TE)**: When electric field is perpendicular to the direction of propagation, i.e. $E_z=0$, but a

corresponding component of the magnetic field **H** is in the direction of propagation.

- Transverse Magnetic (TM) mode: When a component of E field is in the direction of propagation, but H_z=0.
- Transverse ElectroMagnetic (TEM) : When total field lies in the transverse plane in that case both E_z and H_z are zero.

Low-order TE or TM mode fields

THANKYOU