OPTICAL FIBER WAVEGUIDE-II




Optical Fiber Wave guiding

Qa To understand transmission mechanisms of optical fibers
with dimensions approximating to those of a human hair;

» Necessary to consider the optical waveguiding of a cylindrical
glass fiber.

 Fiber acts as an open optical waveguide — may be
analyzed using simple ray theory — Geometric Optics

> Not sufficient when considering all types of optical fibers

= Electromagnetic Mode Theory for Complete Picture



Cylindrical Fiber

= Exact solution of Maxwell’s Eqns. for a cylindrical dielectric
waveguide- very complicated & complex results

= In common with planar waveguide, TE and TM modes are
obtained within dielectric cylinder.

« A cylindrical waveguide is bounded in two dimensions,
therefore, two integers, | and m to specify the modes.

TE,,, and TM,,, modes
These modes from meridional rays propagation within guide

= Hybrid modes where E, and H, are nonzero — results from skew
ray propagation within the fiber. Designated as

HE,, and EH,,, depending upon whether the components of
H or E make the larger contribution to transverse field



Modes in Cylindrical Fibers

s Analysis simplified by considering fibers for communication
purposes.

> Satisfy, weakly guided approximation , A<<1, small grazing angles 6

= Approximate solutions for full set of HE, EH, TE and TM modes
may be given by two linearly polarized (LP) components

» Not exact modes of fiber except for fundamental mode, however, as A is
very small, HE-EH modes pairs occur with almost identical propagation
constants = Degenerate modes

 The superposition of these degenerating modes characterized by a common
propagation constant corresponds to particular LP modes regardless of their
HE, EH, TE or TM configurations.

 This linear combination of degenerate modes produces a useful
simplification in the analysis of weakly guiding fibers.



Correspondence between the lower order in linearly polarized
modes and the traditional exact modes from which they are

formed.

Linearly polarized Exact
LPg; HE,,
LP,, HE,,, TEy;, TMy,
LP,, HE;,, EH,;
LPg, HE,
LP,, HE,,, EH,,
LP, HE,,, TE,,, TM,,
LP,, HE,., TEym TMon




Intensity Profiles

= Electric field configuration for the
three lowest LP modes in terms of their
constituent exact modes:

 (a) LP mode designations;

 (b) exact mode designations;

* (c) electric field distribution of the
exact modes;

* (d) intensity distribution of E, for
exact modes indicating the electric
field intensity profile for the
corresponding LP modes.

< Field strength in the transverse
direction is identical for the modes
which belong to the same LP mode.
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Solutions of Wave Equation

» The scalar wave equation for homogeneous core waveguide
under weak guidance conditions is
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Y is the field (E or H).

» The propagation constant for the guided modes f lie in the range
n.k< B <n.k
> Solution of wave equation for cylindrical fiber have the form
W — E(r){COS D oo (oot — Bz)}

sinl¢
Here, V¥ Represents the dominant transverse electric field component. The
periodic dependence on ¢ gives a mode of radial order I.




Introducing the solution to wave equation results in a differential

equation
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> For a Sl fiber with constant RI core, it Is a Bessel differential
equation and the solutions are cylinder functions. In the core
region the solutions are Bessel functions denoted by J, (Gradually
damped oscillatory functions w.r.t. r)

> Important to note is that the field is finite at r =0 and is represented
by the Zero order Bessel function J,. However, the field vanishes
as r goes to infinity and the solutions in the cladding are therefore
modified Bessel functions denoted by K, — These modified
functions decay exponentially w.r.t. r.



Figures Showing

(a) Variation of the Bessel
function J,(r) for1=0, 1, 2, 3
( first four orders), plotted
againstr.

(b) Graph of the modified
Bessel function K(r) against
rforl=0, 1.
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Bessel Function Solutions
= The electric field is given by
E(r)= GJ,(UR) for R<1 (core)
= GJ,(U) K(WR)/K|(W) for R>1(cladding)

where G; amplitude coefficient, R=r/a; normalized radial coordinate, U & W
are eigen values in the core and cladding respectively

U; radial phase parameter or radial propagation constant
W, cladding decay parameter
U = a(n,2k2-p2)” and W= a(p2-n,2k?)

» The sum of squares of U & W defines a very useful quantity
usually referred to as normalized frequency V

V = (UA+W?)” = ka(n,?-n,%)”



V-Number

Normalized Frequency, V may be expressed in terms of NA and A,
as

2T 2T 1
V =—a(NA)=—an,(2A)?
y (NA) y 1(24)
« Normalized frequency is a dimensionless parameter and simply

called VV-number or value of the fiber.

* It combines in a very useful manner the information about three
parameters, a, A and A.



Allowed LP modes

= Lower order modes obtained in a cylindrical homogeneous
core waveguide

Py [ LPw | P | P [ LPs | LPu | LPu * Value of V, where J,
and J, cross the zero

0.5} | gives the cutoff point
Ji=-]-1

Jo for various modes.
> N lized = .
: 7 \Y N V=V,

* V., is different for
different modes

™

o

HEq HEx HE+; HEx; | HEs HEn HE 1
TMor TMa; TMo3
TEn TEn TEs =0 for LP,; mode
The allowed regions for the LP modes of order 1 = 0,1 = 2.405 for LP,,
against normalized frequency (V) for a circular optical
waveguide with a constant refractive index core (step = 3.83 for LPy,

index fiber).



Step Index / Graded Index fiber

Index Profile Fiber Cross Section and Ray Paths Typical Dimensions
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