OPTICAL FIBER WAVEGUIDE-II

Optical Fiber Wave guiding

- □ To understand transmission mechanisms of optical fibers with dimensions approximating to those of a human hair;
 - Necessary to consider the optical waveguiding of a cylindrical glass fiber.
- Fiber acts as an open optical waveguide may be analyzed using simple ray theory **Geometric Optics**

> Not sufficient when considering all types of optical fibers

Electromagnetic Mode Theory for Complete Picture

Cylindrical Fiber

- Exact solution of Maxwell's Eqns. for a cylindrical dielectric waveguide- very complicated & complex results
- In common with planar waveguide, TE and TM modes are obtained within dielectric cylinder.
 - A cylindrical waveguide is bounded in two dimensions, therefore, two integers, 1 and m to specify the modes.

$TE_{\rm lm}$ and $TM_{\rm lm}$ modes

These modes from meridional rays propagation within guide

 Hybrid modes where E_z and H_z are nonzero – results from skew ray propagation within the fiber. Designated as

 HE_{lm} and EH_{lm} depending upon whether the components of H or E make the larger contribution to transverse field

Modes in Cylindrical Fibers

- Analysis simplified by considering fibers for communication purposes.
 - > Satisfy, weakly guided approximation , $\Delta <<1$, small grazing angles θ
- Approximate solutions for full set of HE, EH, TE and TM modes may be given by two linearly polarized (LP) components
 - Not exact modes of fiber except for fundamental mode, however, as ∆ is very small, HE-EH modes pairs occur with almost identical propagation constants ⇒ Degenerate modes
 - The superposition of these degenerating modes characterized by a common propagation constant corresponds to particular LP modes regardless of their HE, EH, TE or TM configurations.
 - This linear combination of degenerate modes produces a useful simplification in the analysis of weakly guiding fibers.

Correspondence between the lower order in linearly polarized modes and the traditional exact modes from which they are formed.

Linearly polarized	Exact
LP ₀₁	HE ₁₁
LP ₁₁	HE ₂₁ , TE ₀₁ , TM ₀₁
LP ₂₁	HE ₃₁ , EH ₁₁
LP ₀₂	HE ₁₂
LP ₃₁	HE ₄₁ , EH ₂₁
LP ₁₂	HE ₂₂ , TE ₀₂ , TM ₀₂
LP _{Im}	$HE_{2m}, TE_{0m}, TM_{0m}$

Intensity Profiles

- Electric field configuration for the three lowest LP modes in terms of their constituent exact modes:
 - (a) LP mode designations;
 - (b) exact mode designations;
 - (c) electric field distribution of the exact modes;
 - (d) intensity distribution of E_x for exact modes indicating the electric field intensity profile for the corresponding LP modes.
- Field strength in the transverse direction is identical for the modes which belong to the same LP mode.

Solutions of Wave Equation

 The scalar wave equation for homogeneous core waveguide under weak guidance conditions is

$$\frac{d^{2}\Psi}{dr^{2}} + \frac{1}{r}\frac{d\Psi}{dr} + \frac{1}{r^{2}}\frac{d^{2}\Psi}{d\phi^{2}} + (n_{1}^{2}k^{2} - \beta^{2})\Psi = 0$$

 Ψ is the field (**E** or **H**).

• The propagation constant for the guided modes β lie in the range $n_2 k < \beta < n_1 k$

> Solution of wave equation for cylindrical fiber have the form $\Psi = E(r) \left\{ \frac{\cos l\phi}{\sin l\phi} \exp(\omega t - \beta z) \right\}$

Here, Ψ Represents the dominant transverse electric field component. The periodic dependence on ϕ gives a mode of radial order l.

Introducing the solution to wave equation results in a differential equation

$$\frac{d^{2}E}{dr^{2}} + \frac{1}{r}\frac{dE}{dr} + \left[\left(n_{1}^{2}k^{2} - \beta^{2}\right) - \frac{l^{2}}{r^{2}}\right]E = 0$$

- For a SI fiber with constant RI core, it is a Bessel differential equation and the solutions are cylinder functions. In the core region the solutions are *Bessel functions* denoted by J₁ (Gradually damped oscillatory functions w.r.t. r)
- Important to note is that the field is finite at r =0 and is represented by the Zero order Bessel function J₀. However, the field vanishes as r goes to infinity and the solutions in the cladding are therefore modified Bessel functions denoted by K₁ – These modified functions decay exponentially w.r.t. r.

Figures Showing

(a) Variation of the Bessel function $J_{l}(r)$ for l = 0, 1, 2, 3 (first four orders), plotted against *r*.

(b) Graph of the modified Bessel function $K_{l}(r)$ against *r* for l = 0, 1.

Bessel Function Solutions

• The electric field is given by

 $\mathbf{E}(\mathbf{r}) = \mathbf{GJ}_{1}(\mathbf{UR}) \qquad \text{for } \mathbf{R} < 1 \text{ (core)}$

= $GJ_{l}(U) K_{l}(WR)/K_{l}(W)$ for R>1(cladding)

where G; amplitude coefficient, R=r/a; normalized radial coordinate, U & W are eigen values in the core and cladding respectively

U; radial phase parameter or radial propagation constant W; cladding decay parameter

 $U = a(n_1^2 k^2 - \beta^2)^{\frac{1}{2}}$ and $W = a(\beta^2 - n_2^2 k^2)^{\frac{1}{2}}$

• The sum of squares of U & W defines a very useful quantity usually referred to as *normalized frequency V*

$$V = (\mathbf{U}^2 + \mathbf{W}^2)^{\frac{1}{2}} = \mathbf{ka}(\mathbf{n_1}^2 - \mathbf{n_2}^2)^{\frac{1}{2}}$$

V-Number

Normalized Frequency, V may be expressed in terms of NA and Δ , as

$$V = \frac{2\pi}{\lambda} a(NA) = \frac{2\pi}{\lambda} a n_1 (2\Delta)^{\frac{1}{2}}$$

- Normalized frequency is a dimensionless parameter and simply called *V-number* or *value of the fiber*.
- It combines in a very useful manner the information about three parameters, \mathbf{a} , Δ and λ .

Allowed LP modes

 Lower order modes obtained in a cylindrical homogeneous core waveguide

The allowed regions for the LP modes of order l = 0,1against normalized frequency (V) for a circular optical waveguide with a constant refractive index core (step index fiber). • Value of V, where J₀ and J₁ cross the zero gives the cutoff point for various modes.

 $\mathbf{V} = \mathbf{V}_{\mathbf{c}};$

- V_c is different for different modes
 - = 0 for LP₀₁ mode
 - $= 2.405 \text{ for } LP_{11}$
 - $= 3.83 \text{ for } LP_{02}$

Step Index / Graded Index fiber

