OPTICAL FIBER JOINTS & CONNECTIONS

Basic Fiber Optic Link

OPTICAL FIBER JOINTS

Technical requirement for both jointing & termination of transmission media

□ Number of Joints or Connections

- Link length between repeaters
- Continuous length of fiber
- Length of fiber cable practically or conveniently installed as continuous length

• **Repeaters Spacing** (A continuously increasing parameter)

➤Ranges from ≈ 40-60 km at 400 Mbits/s
 ≈ 100 km at 2.4 Gb/s
 ≈ 300 km at 1.7-10 Gb/s using SMDSFs

FIBER JOINTS

- Source- Fiber
- Fiber- Fiber
- Fiber- Detector
- Manufacturers supply *Electro-optical devices* (Sources and Detectors) with fiber optic *pigtail* to facilitate direct fiber-fiber connection
 - □ IMPORTANT ASPECT IS <u>FIBER-TO- FIBER</u> CONNECTION WITH LOW LOSS AND MINIMUM DISTORTION

Two major categories of fiber joints

□ FIBER SPLICES: Permanent or Semi-permanent joints ✓Soldering

FIBER CONNECTORS: Demountable or Removable joints
 ✓ Plugs or Sockets

***FIBER COUPLERS:** Branching devices

- Splitters or Combiners
- Importance in Networks

□ Crucial aspect of fiber joints concerning *Optical Losses* associated with the connection

Fiber Alignment

LOSS MECHANISMS AT JOINTS

1. Fresnel Reflection

- **Optical Loss encountered at the interfaces** (Even when two fiber ends are smooth, perpendicular to fiber axes and perfectly aligned)
- A small proportion of light may be reflected back into transmitting fiber causing attenuation at the joint.

> Fresnel Reflection

Reflection Loss

Occurs due to step changes in refractive index at jointed interface

Glass – Air - Glass

Fraction of light reflected at a single interface

$$\mathbf{r} = \left(\frac{\mathbf{n}_1 - \mathbf{n}}{\mathbf{n}_1 + \mathbf{n}}\right)^2$$

 n_1 : R.I. of core, n : R.I. of interfacing medium (= 1 for air)

Loss in decibel due to FR at single interface

$$Loss_{Fres} = -10 \log_{10}(1-r)$$

 Can be reduced to a very low level using index matching fluid in the gap between jointed fibers.

2. Deviation in Geometrical & Optical Parameters

• All light from one fiber is not transmitted to another fiber ; Because of mismatch of mechanical dimension

Three major cases :

- a) Core mismatch
- b) NA mismatch
- c) Index Profile

Intrinsic Losses

Losses due to:

- Fresnel Reflection
- Deviation in Geometrical & Optical parameters

Minimized using fibers manufactured with lowest tolerance i.e.(same fiber)

Extrinsic Losses

Losses due to some imperfection in splicing Caused by Misalignment

Three possible types of misalignment at joint

- (a) Longitudinal misalignment
- (b) Lateral misalignment;
- (c) Angular misalignment

(a) Loss due to lateral and longitudinal misalignment for a 50 μ m core diameter GI fiber; (b) insertion loss due to angular misalignment for joints in two MMSI fibers with NA of 0.22 and 0.3.

FIBER SPLICES

□ A permanent joint formed between two fibers

TWO BROAD CATEGORIES

• Fusion Splicing or Welding

Accomplished by applying localized heating (a flame or an electric arc) at the interface between two butted, prealigned fiber ends causing them to soften and fuse.

Mechanical Splicing

Fibers are held in alignment by some mechanical means

> Achieved by various methods;

- Tube Splices
- o Groove Splices

> MUST HAVE SMOOTH AND SQUARE END FACES

> End preparation achieved using suitable tools - " Cleavers" " Scribe and Break" or "Score and Break"

Scoring of fiber surface under tension with cutting tool
 (Sapphire, Diamond or Tungsten Carbide blade)

Optical fiber end preparation: the principle of scribe and break cutting.

Fiber Cleavers

Two Action Cleaver:

Fiber cleaving & Fusion splicing tool

One Action Cleaver

Handheld Cleaver

Cable Preparation Equipment

Multipack;

- Enhanced quality to prevent cracks and fiber strength degradation.
- Allow skill-free operation of factory fiber prep and field splicing applications.
- Equipped with a high precision tensile strip and automatic ultrasonic cleaning action.

Fusion Splicing of Optical Fibers

Electric Arc Fusion splicing

- Require Fiber end surfaces to be prepared for joint
- Heating of prepared fiber ends to fusion point with application of axial pressure between two fibers.
- Positioning & alignment using microscopes

Prefusion Method

No need for end preparation

Prefusion method for accurate splicing

Smaller Fresnel Reflection loss
Typical Losses : 0.1 to 0.2 dB for MMF

Fusion Splicers

Joint after Fusion Splicing

- Drawback: Fiber get weakened near splice (≈30%)
 - Fiber fracture occurs near the heat-affected zone adjacent to the fused joint.
 - Splice be packaged to reduce tensile loading

Protection of Joints

Protection Sleeves for spliced fibers

Underground fiber splice tray

Fiber joint enclosures

Mechanical Splicing

 Uses accurately produced rigid alignment tubes into which the prepared fiber ends are permanently bonded.

Techniques for tube splicing of optical fibers:

- (a) Snug Tube Splice
- (b) Loose Tube Splice; Square Cross section Capillary

Comparison of Two Approaches

Snug Tube Splices

• Exhibits problems with capillary tolerance requirements

 Losses ≈ up to 0.5 dB with Snug tube splice (ceramic capillaries) using MMGI and SM fibers.

Loose Tube Splices

- Avoids the critical tolerance requirements.
- Losses ≈ 0.1 dB with loose tube splice using MMGI fibers.

Ultra Splice

Ultra Splice: Reusable mechanical splice.

Average Loss $\cong 0.2 \text{ dB}$

Groove Splices

- Use of grooves to secure the fibers to be jointed
 - \succ better alignment to the prepared fiber ends.

> Insertion losses ≈ 0.1 dB using jigs for producing V-groove splice.

Elastic Tube or Elastomeric Splice

 Comprises of two elastic parts (inner with V-groove) in compression to ensure alignment of fibers.

Elastomeric Splice: (a) Cross section (b) Assembly

- Fibers of different diameters tend to be centred and hence successfully spliced.
- ➢ General loss ~ 0.25 dB for commercial product

Spring Groove Splice

- Utilizes a bracket containing two cylindrical pins, which serve as an alignment guide for two prepared fibers.
- An elastic element (a spring) used to press the fibers into groove and maintain alignment of fiber ends.

Mean Losses ≈ 0.05 dB with MMGI Fibers.

□ Practically used in Italy.

Springroove Splice : (a) Expanded overview (b) Cross-section Schematic

Secondary Alignment Techniques

□ Alignment of secondary elements around the bare fibers

- Increased ruggedness
- Easy ground and polish of fiber end
- Better termination

Drawbacks:

- Time consuming for termination
- Increased losses due to tolerances on secondary elements ⇒ Fiber misalignment.

Glass capillary tubes (Ferrules)

MMF mechanical splice using glass capillary tubes.

Fixing of glass ferrules

Alignment sleeve of metal or plastic in which glass tube fibers are aligned

Average loss \cong 0.2 dB

Rotary Splice

Use glass capillary tubes for fiber termination with small eccentricity.

Rotary Splice for SMF:

- (a) Alignment using glass ferrules
- (b) Glass rod alignment sleeve

- Built-in offset and rotation, for excellent alignment
- Alignment accuracy of 0.05 μm using three glass rod alignment sleeve. (necessary for SMFs; 8-10 μm MFD)
- Mean Losses ≅ 0.03 dB using Index matching gels (Not affected by skill levels of the splicer).
- * Used in large installations in USA

MULTIPLE SPLICES

- Commercially available for splicing number of fibers simultaneously
 - Simultaneous Splicing of Five fibers in 5 minutes;
 - 15 minutes for five single fusion splicing.

- ***** Splice Losses:
 - Ranging 0.04 to 0.12 dB- MM GI fibers
 - 0.13 to 0.4 dB SM fibers.

A. Silicon Chip Array

- Utilize trapezoidal grooves of a silicon chip using a comb structure for fiber laying and top silicon chip
- End faces ground & polished after curing.

Multiple fibers splicing using a Silicon chip array

B. V-groove flat Chip

- Moulded from glass filled polymer resin
- Direct mass splicing of 12 fiber ribbons with simultaneous end preparation using ribbon grinding and polishing procedures.
- Fibers positioned in grooves in glass filled plastic substrate.
- Vacuum technique to hold fibers at position whilst cover plate is applied.

 Spring clips to hold assembly and hole in cover plate for index matching gel.

❑ Average Splice Losses ≈0.18 dB with MM fiber.

V-groove polymer resin ribbon fiber splice.

Fiber Splicing and Connectorization kits

THANK YOU