Transmission Characteristics of Optical Fiber I

OPTICAL FIBER

 An optical fiber is a long cylindrical dielectric waveguide, usually of circular cross-section, transparent to light over the operating wavelength.

Fiber Structure

A single solid dielectric of two concentric layers. The inner layer known as Core is of radius 'a' and refractive index 'n₁'. The outer layer called Cladding has refractive index 'n₂'.

$n_2 < n_1 \rightarrow$ condition necessary for TIR

Step Index / Graded Index

DESIGNER'S PARAMETERS

Numerical Aperture (NA) :

NA = $\sin\theta_a = [(n_1)^2 - (n_2)^2]^{1/2}$ 0.10-0.25 for SMF, 0.20-0.50 for MMF

Relative Refractive Index Difference (Δ):

 $\Delta = (n_1 - n_2)/n$; n- the average refractive index <0.4% for SMF, >1% for MMF

Normalized Frequency or V-Number:

 $V = [(2\pi a)/\lambda] NA$

 $V \le 2.405$ for SMF; ≥ 10 for MMF

Transmission Characteristics

Characteristics of Primary Importance

- Attenuation (or Transmission loss): determines the maximum *repeater less separation* between a transmitter and receiver.
- Dispersion: limit the information carrying capacity of a fiber i.e. *Bandwidth*

Fibre Performance

Optical Fiber Attenuation

- > Logarithmic relationship between the optical output power and the optical input power
- > Measure of the decay of signal strength or light power

$$P(z) = P_{in}e_{-\alpha}^{(z)}$$

where,

P(z): Optical power at distance 'z' from input

P_o: Input optical power

 α : Fiber attenuation coefficient, [dB/km]

Optical Attenuation

Optical Fiber Attenuation

> Usually, attenuation is expressed in terms of decibels or mostly dB/km

$$\alpha = \frac{1}{z} 10 \log \left(\frac{P_{out}}{P_{in}}\right)$$

Attenuation is because of different mechanisms

$$\alpha_{\text{Total}} = \alpha_{\text{absorption}} + \alpha_{\text{scattering}} + \alpha_{\text{bending}}$$

Basic Attenuation Mechanisms

1. Material Absorption (Intrinsic and Extrinsic)

2. Scattering (Linear and Non-linear)

3. Bending loss (Macrobends and Microbends)

Material Absorption

A loss mechanism related to the bulk materials and the fabrication process for the fiber

Results in the loss of some of the transmitted optical power in the waveguide

Absorption of light (optical energy)

- **a. Intrinsic** : caused by the interaction with one of the major components of the glass
 - Absorption in the IR-wavelength region (Molecular absorption)
 - Absorption in UV wavelength region (Electronic absorption)

- **b.** Extrinsic : caused by impurities within the glass
 - Mainly absorption by **transition metal** impurities (Cr, Cu, Fe, Mn, Ni, V etc.)
 - > Reduced to acceptable levels (i.e. one part in 10¹⁵) by traditional glass refining techniques.
 - Another major extrinsic loss mechanism is caused by absorption due to water (Hydroxyl- OH ion) dissolved in the glass
 - > Hydroxyl groups are bonded to glass structure and have fundamental stretching vibrations depending on group position.

Material Absorption & Scattering Losses

Fig. 12.2. Measured attenuation in silica fibers (solid line) and theoretical limits (dashed lines) given by Rayleigh scattering in the short-wavelength region, and by molecular vibrations (infrared absorption) in the infrared spectral region.

Attenuation in Silica Fibers

THANK YOU