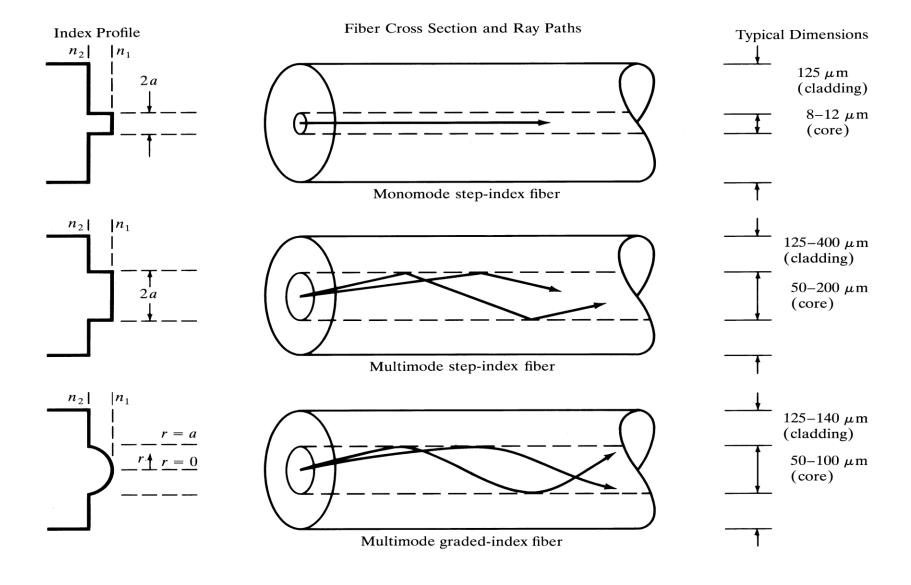

Transmission Characteristics of Optical Fiber I

OPTICAL FIBER

☐ An optical fiber is a long cylindrical dielectric waveguide, usually of circular cross-section, transparent to light over the operating wavelength.


Fiber Structure

■ A single solid dielectric of two concentric layers. The inner layer known as **Core** is of radius 'a' and refractive index 'n₁'. The outer layer called **Cladding** has refractive index 'n₂'.

$n_2 < n_1 \rightarrow condition necessary for TIR$

Step Index / Graded Index

DESIGNER'S PARAMETERS

Numerical Aperture (NA):

NA =
$$\sin\theta_a = [(n_1)^2 - (n_2)^2]^{1/2}$$

0.10-0.25 for SMF, 0.20-0.50 for MMF

Relative Refractive Index Difference (Δ):

$$\Delta = (n_1 - n_2)/n$$
; n- the average refractive index <0.4% for SMF, >1% for MMF

Normalized Frequency or V-Number:

$$V = [(2\pi a)/\lambda] \text{ NA}$$

$$V \le 2.405 \text{ for SMF}; \ge 10 \text{ for MMF}$$

Transmission Characteristics

Characteristics of Primary Importance

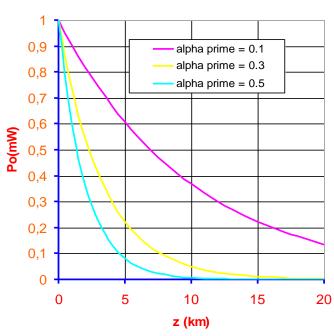
- Attenuation (or Transmission loss): determines the maximum *repeater less separation* between a transmitter and receiver.
- **Dispersion**: limit the information carrying capacity of a fiber i.e. *Bandwidth*

Fibre Performance

Optical Fiber Attenuation

- > Logarithmic relationship between the optical output power and the optical input power
- > Measure of the decay of signal strength or light power

$$P(z) = P_{in}e_{-\alpha}^{(z)}$$


where,

P(z): Optical power at distance 'z' from input

P_o: Input optical power

 α : Fiber attenuation coefficient, [dB/km]

Optical Attenuation

Optical Fiber Attenuation

> Usually, attenuation is expressed in terms of decibels or mostly dB/km

$$\alpha = \frac{1}{z} 10 log \left(\frac{P_{out}}{P_{in}} \right)$$

Attenuation is because of different mechanisms

$$\alpha_{\text{Total}} = \alpha_{\text{absorption}} + \alpha_{\text{scattering}} + \alpha_{\text{bending}}$$

Basic Attenuation Mechanisms

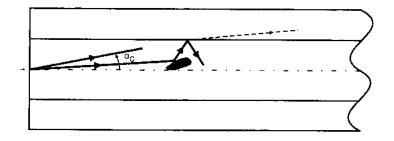
- 1. Material Absorption (Intrinsic and Extrinsic)
- 2. Scattering (Linear and Non-linear)
- 3. Bending loss (Macrobends and Microbends)

Material Absorption

- A loss mechanism related to the bulk materials and the fabrication process for the fiber
 - ➤ Results in the loss of some of the transmitted optical power in the waveguide

Absorption of light (optical energy)

- **a. Intrinsic**: caused by the interaction with one of the major components of the glass
 - Absorption in the IR-wavelength region (Molecular absorption)
 - Absorption in UV wavelength region (Electronic absorption)


b. Extrinsic: caused by impurities within the glass

- Mainly absorption by **transition metal** impurities (Cr, Cu, Fe, Mn, Ni, V etc.)
 - > Reduced to acceptable levels (i.e. one part in 10¹⁵) by traditional glass refining techniques.
- Another major extrinsic loss mechanism is caused by absorption due to water (Hydroxyl- OH ion) dissolved in the glass
 - > Hydroxyl groups are bonded to glass structure and have fundamental stretching vibrations depending on group position.

SCATTERING

Scattering effect prevents attainment of total internal reflection at the core cladding boundary – resulting in power loss

> Due to Obstacles or inhomogeneities

Scattering Loss

> Even very small changes in the value of the core's refractive index will be seen by a traveling beam as an optical obstacle and this obstacle will change the direction of original beam.

Scattering Loss

- Wave interacts with "particle" or molecules
- Transfers power to other directions
 - a. Linear scattering:
 - » Scattered power proportional to incident power
 - » No change in frequency of scattered light
 - » Rayleigh scattering:

Dominant intrinsic loss mechanism

Particles << λ

Molecules, changes in n (change in composition), changes in density
 Scattering strength ~1/λ⁴

Fundamental loss at low wavelengths

- Minimum loss at 1550 nm

"Magic wavelength #1" in silica (SiO₂)

Theoretical minimum ~0.15 dB/km

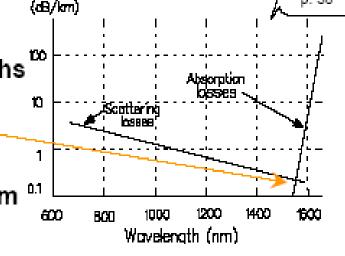


Fig. 3.2

Rayleigh Scattering Loss

Rayleigh scattering coefficient (γ_R) is proportional to ($1/\lambda^4$) and is related to transmission loss factor of the fiber as

$$\Gamma = \exp(-\gamma_R L)$$

- * Rayleigh scattering component can be reduced by operating at the longest possible wavelength.
- Theoretical attenuation due to Rayleigh scattering in silica at different wavelengths:

630nm	5.2 dB km ⁻¹
1000 nm	0.8 dB km ⁻¹
1300 nm	0.3 dB km ⁻¹

Scattering Loss (cont...)

- a. Linear scattering (cont)
 - Mie scattering > occurs at inhomogeneities comparable in
 » Particles ~λ
 size to guided wavelength
 - Inhomogeneities
 - Core-cladding refractive index variations
 - Core-cladding interface impurities
 - Diameter fluctuations
 - Strains in fiber
 - Bubbles in fiber
- Mainly in the forward direction

- » Solution:
 - Remove imperfections
 - Controlled extrusion &cabling of the fiber
 - Increasing fiber guidance by increasing 'Δ'

Scattering Loss: Nonlinear

- b. Nonlinear Scattering
- Cause: high E field (V/m) (i.e., combination of power, area, and distance)
- Power scattered forward, backward, or side directions, depending on interaction
- A. Brillouin scattering: SBS
 - » Photon undergoes nonlinear interaction to produce...
 - Vibrational energy ("phonons") and
 - Scattered light ("photons")
 - » Upward and downward frequency shifts
 - Strength of scattering varies with scattering angle
 - Maximum in backward direction; minimum of zero in forward direction
 - » Solution: keep power level below threshold
 - Nonlinear scattering imposes "ceiling" on source power.
 - Threshold power level

$$P_B = (17.6 \times 10^{-3}) a^2 \lambda^2 \alpha \Delta v'$$
 (typically $\leq 1 \text{ W in SM fiber}$)

- b. Nonlinear Scattering (cont)
 - B. Raman scattering: SRS
 - » Nonlinear interaction produces....
 - High-frequency phonon (instead low-frequency phonon of Brillouin scattering)
 Optical phonon
 - Scattered photons
 - » Scattering predominantly in forward direction (power not lost)
 - » Power level threshold:

$$P_{\text{Raman}} = (23.6 \times 10^{-2}) a^{2} \lambda' \alpha \text{ (typically few W)}$$

- » Solution: keep power level below threshold
 - Single channel fiber
 - Brillouin threshold lower than Raman and determines power "ceiling"
- ❖ Normally, SBS threshold occurs at 100 mW, and SRS threshold at 1W

Material Absorption & Scattering Losses

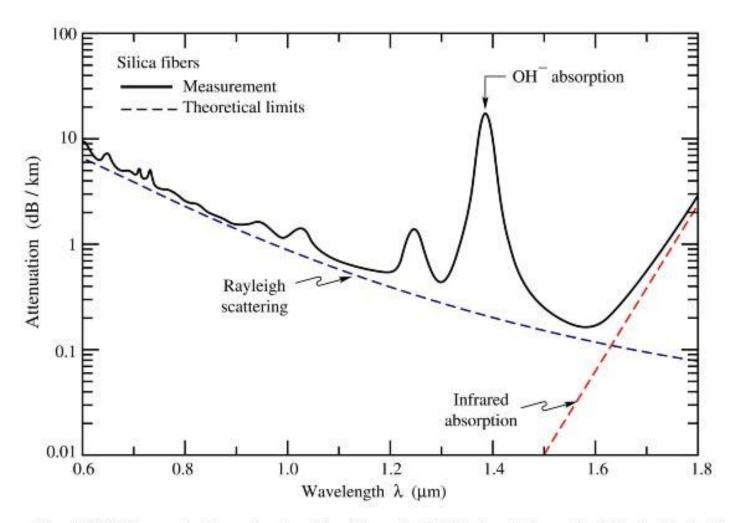
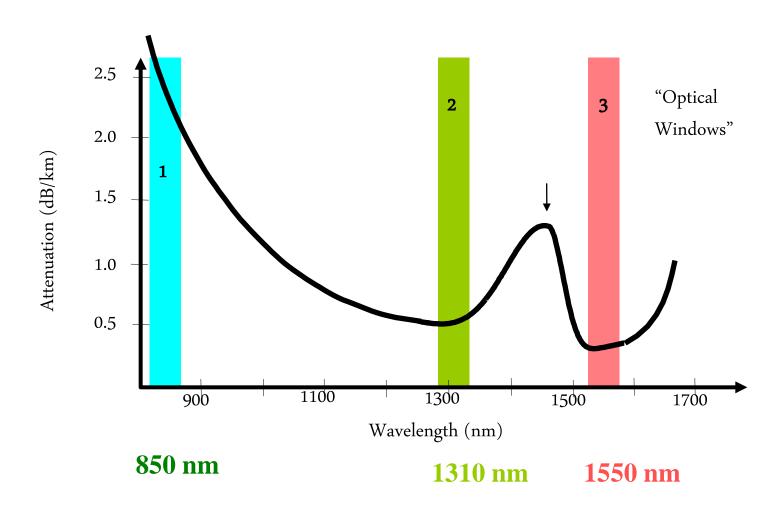
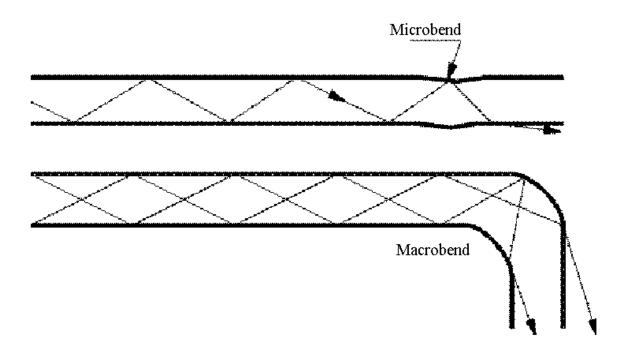
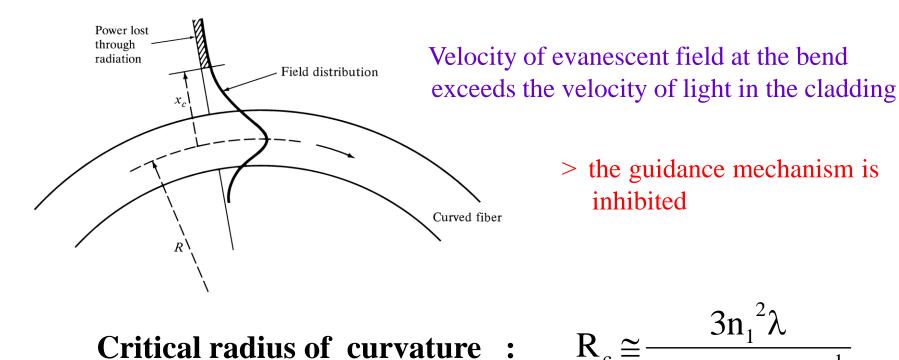



Fig. 12.2. Measured attenuation in silica fibers (solid line) and theoretical limits (dashed lines) given by Rayleigh scattering in the short-wavelength region, and by molecular vibrations (infrared absorption) in the infrared spectral region.

Attenuation in Silica Fibers

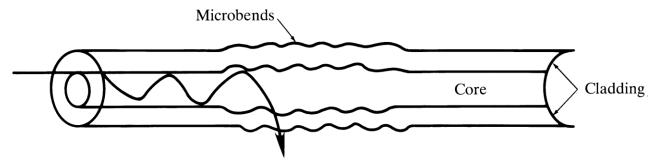

BENDING LOSSES

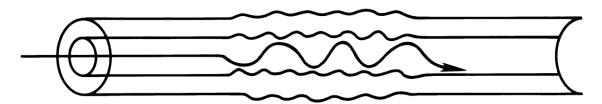
Bending an optical fiber introduces a loss in light power


- Macrobends
- Microbends

Micro- and Macro- bending

- Microbending Result of microscopic imperfections in the geometry of the fiber
- Macrobending Fiber bending with diameters on the order of centimeters (usually if the radius of the bend is larger than 10 cm)


Power loss in a curved fiber


> Designing fibers with large relative refractive index differences Operating at the shortest wavelength possible.

Microbending losses

 Results from non-uniform lateral pressures of fiber surface (core-cladding interface)

Power loss from higher-order modes

Power coupling to higher-order modes

Minimized by extruding a compressible jacket over the fiber.

LOSS SUMMARY

Losses in fiber are due to

- * Material Absorption
- * Scattering (Linear and Nonlinear)
- * Bending (Macrobends & Microbends)
- * Interface inhomogenities

> Minimum loss is at 1550 nm

Theoretical minimum loss ($\approx 0.15 \text{ dB/km}$) almost achieved in practice with Silica based optical fiber.

THANK YOU