Controller need Tuning

Chapter 19

Goal to achieve

- The system respond quickly to errors
- The system remain stable (PV does not oscillate around SP)
- Gain: (Proportional sensitivity)

= Δ output (%) / **Δ** input (%)

Proportional Band (PB) = 100/gain

= 100x Δ input (%) / Δ output (%)

Case 1	Gain (increase)	small change ∆ input	for 100% output	PB (Decrease)	System is unstable (needs Faster controller)
Case 2	Gain (Decrease)	Large Change ∆ input	100% output	PB (increase)	System is stable (slower controller)
Case 3	infinite	Δ input =0	100% output	PB=0	System is unstable (no action of controller)

Physical meaning:

Convey measurement and instructions to other instrument in a control loop to maintain the highest level of safety and efficiency.

ON-OFF controller:

If PB = 0, System operates either fully open or fully closed position.

Band width is approximately zero

- Fast process (Small volume) may require less gain to achieve stability.
- Slow process (Large volume) requires Higher gain

- Proportional Action: is used to set the basic gain value of the controller.
- Expressed as
 - proportional gain and
 - proportional band

Proportional gain: already discussed

Proportional band: Another way of representing the same information.

PB= Δ input %/ 100% output

what percentage change in controller input span will cause a 100 % change in controller output

eg. change in input controller 10% change in output controller 20% Gain = 20 / 10 =2

- PB = Δ input % (span) for 100% output
 - PB= 100/Gain
 - Gain=100%/PB

Gain =2

• PB =100 %/2 =50%

Limits of proportional action:

- > Respond only to change in error: magnitude of error return
- Does not return PV to set point: PV to a value that is within a defined span

Determining the controller output:

Output is a function of error and control Gain **controller output:**

output change % = (error change, %) x gain if the step point change by 10% with PB =50% output change %= Δ input % x gain = Δ input % x 100 /PB = 10x 100/50 = 20%

Proportional Action-closed loop

• Gain (increase) means Band (Decrease)

 PB

 Set point

Process variable (PV) will cycle around the set point hence process will become unstable as Output increase

• Gain (Decrease) means Band (increase)

Loop is very stable as Output Decrease

Proportional summary

 Δ Output = (Change in error)x gain Gain = Δ Output _(fully open)/(Change in error) Setting :

- Small PB(%) minimize offset
- High gain Possible cycling
- Large PB (%) Large offset
- Low Gain Stable loop