
10. Graph Matrices v 

Since a graph is completely determined by specifying either its adjacency structure or its 

incidenoe structure, these specifications provide far more efficient ways of represeting a 

large or complicated graph than a pictorial representation. As computers are more adept a 

manipulating numbers than at recognising pictures, it is standard practice to communicae 

the specification of a graph to a computer in matrix form. In this chapter, we study various 

types of matrices associated with a graph, and our study is based on Narsing Deo {63 

Foulds [82]. Harary [104] and Parthasarathy [180. 

10.1 Incidence Matrix 

Let G be a graph with n vertices, m edges and without self-loops. The incidence matrix A of 

GIs an n xm matrix A = aij whose n rows correspond to the n vertices and the m columns 

corespond to m edges such that 

if jth edge mj is incident on the ith vertex 

otherwise. 

It is also called vertex-edge incidence matrix and is denoted by A(G). 

Example Consider the graphs given in Figure 10.1. The incidence matrix of G: is 
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10.3 Cycle Matrix 

Let the graph G have m edges and let q be the number of different cycles in G. The cycle 

matrix B= |bijla<m of G is a (0, 1) matrix of order q x m, with bij 1, if the ith cycie 

ncludes jth edge and b,i0, otherwise. The cycle matrix B of a graph G is denoted by 

B(G). 

Example Consider the graph Gi given in Figure 10.3. 
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Fig. 10.3 

The graph Gi has four different cycles Z1 = {e1, ez}, Z2 = {e3, es, er}, Z3 = {e4, e6. en} 

and Z4= {e3, e4, e6, es. 

The cycle matrix is 



00 0 0 0 
2 0 01 0 1 0 1 0 

B(G) 
0 0 1 1 10 0 

The graph G2 of Figure 10.3 has seven different cycles, namely, Zi ={e1, e2f, 

7. es}. Z3{c1. e7, es). Za = {eA, es, es, e}, Zs = {ez, e4, es, es, ek 
ie1. Ca. Cs. e6. es} and Z;= {eo). The cycle matrix is given by 

e e2 e3 C4 e5 e6 e7 e8 e9 

11 0 0 0 0 0 0 0 

00 0 1 1 0 
00 1 1 

z 0 1 0 

3 0 
0 0 0 1 1 1 10 00 
0 1 0 1 1 10 1 0 

B(G2)= 4 
Z5 

110 1 0 10 0 1 
LO 0 0 00 00 0 1J 

Z6 

We have the following observations regarding the cycle matrix B(G) of a graph G. 

1. A column of all zeros corresponds to a non cycle edge, that is, an edge which does 
not belong to any cycle. 

2. Each row of B(G) is a cycle vector. 

3. A cycle matrix has the property of representing a self-loop and the corresponding 
row has a single one. 

4. The number of ones in a row is equal to the number of edges in the corresponding 

cycle. 
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We know that a set of fundamental cycles (or basic cycles) with respect to any spanning tree in a connected graph are the only independent cycles in a graph. The remaining cycBes can be obtained as ring sums (i.e., linear combinations) of these cycles. Thus, in a cycle matrix, if we take only those rows that correspond to a set of fundamental cycles and remove all other rows, we do not lose any information. The removed rows can be formed from the rows corresponding to the set of fundamental cycles. For example, in the cycle matrix of the graph given in Figure 10.6, the fourth row is simply the mod 2 sum of the second and the third rows. Fundamental cycles are 
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Corollary 10.2 We know, rank A + nullity A -n, and using this in (10.13.4), we get 

n- rank AB < n- rank A +n- rank B. 

Therefore, rank AB > rank A+ rank B n. 

If in above, AB = 0, then rank A + rank B n. 

10.4 Cut-Set Matrix 

Let G be a graph with m edges and q cutsets. The cut-set matrix C= [cijlgzm of G is a (0, 
1-matrix with 

1, if ith cutset contains jth edge, 

Cij 
0, otherwise 



279 

Example Consider the graphs shown in Figure 10. 7. 
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In the graph G1, E = {e1, e2, e3, e4, es, e6, e7, e8. 

The cut-sets are ci = {es}, c2 = {ei, ez}, ca = {e3, es}, c4 = {es, e6, er}, cs ={es, e6,e}, c6= 

ea, es}, c7= {e3, e4, e7} and cg = {e4, es, er}. 

The cut-sets for the graph G2 are c1 = {e1, ez}, c2= {es, ea}, c3 ={e4, es}, C4= {e1, e6}, cs 

= {e2, e6}, c6 = {e3, es}, c7 = {e1, es, c7}, cg= {e2, e3, en} and c9 = {es, e6, en}. 
Thus the cut-set matrices are given by 

ej e2 e3 e4 e5 e6 e e8 

C10 0 0 0 0 0 0 11 
11 0 0 0 0 0 0 

0 0 10 10 0 0 
C2 

c3 
000 0 1 1 1 0 

C4 c(G) = 
00 1 0 0 110 

C5 
and 

0 00 1 0 1 0 0 C6 
C1 0 0 1100 1 0 

C8 0 0 0 1 10 10 
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We have the following observations about the cut-set matrix C(G) of a graph G. 
I. The permutation of rows or columns in a cut-set matrix corresponds simply to re naming of the cut-sets and edges respectively. 

2. Each row in C(G) is a cut-set vector. 
3. A column with all zeros corresponds to an edge forming a self-loop. 

4. Parallel edges form identical columns in the cut-set matrix. 
5. ln a non-separable graph, since every set of edges incident on a vertex is a cut-set, therefore every row of incidence matrix A(G) is included as a row in the cut-set matrix 

C(C). That is, for a non-separable graph G, C(G) contains A(G). For a separable grapn, the incidence matrix of each block is contained in the cut-set matrix. For example, in 
the graph G1 of Figure 10.7, the incidence matrix of the block {e3, e4, es, e6, en} is 
the 4 x 5 submatrix of C, left after deleting rows c1, C2, C5, cs and columns e , e2, eg. 

6. It follows from observation 5, that rank C(G)2 rank A(G). Therefore, for a connected 

graph with n vertices, rank C(G) 2 n- 1. 



10.7 Path Matrix 

Let G be a graph with m edges, and u and v be any two vertices in G. The path matrix for vertices n andr denoted by P(u, v) - |pila*m. where q is the number of different paths between u and v, is defined as 

if jth edge lies in the ith path, 
pij 

otherwise. 

Clearly, a path matrix is defincd for a particular pair of vertices, the rows in P(u, v) comespond to different paths between u and v, and the columns correspond to differen edges in G. For example, consider the graph in Figure 10.10. 



Fig. 10.10 

The different paths between the vertices va and va are 

P1={e8, es), P2 = {es, e7, es} and Ps = {es, es» es, es 
The path matrix for v3, v4 is given by 

e1 e8 e2 e3 e4 e5 e6 e7 

fo o o 0 1 0 0 11 
P(v3, va)=| 0 0 1 0 0 0 1 1 

00 1 10 1 0 1 

We have the following observations about the path matrix. 

1. A column of all zeros corresponds to an edge that does not lie in any path between u 

and v. 

2. A column of all ones coresponds to an edge that lies in every path between u and v. 

3. There is no row with all zeros. 

4. The ring sum of any two rows in P(u, v) corresponds to a cycle or an edge-disjoint 

union of cycles. 



0.8 Adjacency Matrix 

LeV= (V, E) be a graph with V = {vi, v2, ..., va}, E = {e1, ez, ..., em} and without parallel 

edges. The adjacency matrix of G is an n x n symmetric binary matrix X = ij defined oveT 

the ring of integers such that 

if vvj ¬ E. 

0. 0. otherwise. 

Example Consider the graph G given in Figure 10.12. 
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The adjacency matrix of G is given by 

' V2 V3 V4 Vs V6 

1 01 0 0 
1 1001 

V2 
00 0 10 0 

3 

4 

1 0 10 0D 
o o 10 0. 

We have the following observations about the adjacency matrix X of a graph G. 

.The entries along the principal diagonal of X are all zeros if and only if the graph has 

no self-loops. However, a self-loop at the ith vertex corresponds to Xji= 

lt the graph has no self-loops, the degree of a vertex equals the number of ones in the 

coresponding row or column of X. 

3. Permutation of rows and the corresponding columns imply reordering the vertices. 

We note that the rows and columns are arranged in the same order. Therefore, when 

two rows are interchanged in X, the corresponding columns are also interchanged. 
Thus two graphs G1 and G2 without parallel edges are isomorphic if and only if their 

adjacency matrices X(G1) and X(G2) are related by 

X(G2) = R x(G1)R, 

where Ris a permutation matrix. 

4. A graph G is disconnected having components G and G2 if and only if the adjacency 
matrix X(G) is partitioned as 

x(G1) 
x(G) = 

:X(Ga) 

where X(G) and X(G2) are respectively the adjacency matrices of the components 
Gi and Ga. Obviously, the above partitioning implies that there are no edges between 
vertices in Gi and vertices in G2. 

5. If any square, symmetric and binary matrix Q of order n is given, then there exists a 
graph G with n vertices and without parallel edges whose adjacency matrix is Q. 



{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }

